Dalil Menelaus Pada Segitiga Dan Pembuktiannya

Posted on

         Pondok Soal.com – Pada artikel kali ini kita akan membahas bahan dalil menelaus pada segitiga yang merupakan bab dari “geometri bidang datar” yang ada pada matematika peminatan kelas X. Silahkan baca juga bahan “Dalil Titik Tengah dan Intercep Segitiga” untuk lebih mekompleksi bahan yang ada.

Konsep Dalil Menelaus pada Segitiga
       Diberikan sebuah segitiga ABC, titik D terletak pada garis AC dan titik E terletak pada garis BC. Kemudian titik D dan E dihubungkan membentuk garis DE. Garis AB dan DE diperpanjang sesampai lalu keduanya berpotongan di titik F menyerupai nampak pada gambar berikut.

Dalil Menelaus berbunyi :
Titik D, E, dan F segaris (Kolinear)
apabila dan hanya apabila memenuhi $ \, \frac{BE}{EC}\times \frac{CD}{DA}\times \frac{AF}{FB} = 1 $.

Untuk memudahkan dalam mengingat, perhatikan alur panah berikut :

Contoh soal Dalil Menelaus pada Segitiga :
1). Dari gambar berikut, tentukan nilai $ x $?

Penyelesaian :
*). Panjang LO = OM sesampai lalu $ \frac{LO}{OM} = 1 $.
*). Kita memakai dalil Menenlaus pada segitiga :
$ \begin{align} \frac{LO}{OM} . \frac{MN}{NK} . \frac{KP}{LP} & = 1 \\ 1 . \frac{2}{3} . \frac{8+x}{8} & = 1 \\ \frac{16 + 2x}{24} & = 1 \\ 16 + 2x & = 24 \\ 2x & = 8 \\ x & = 4 \end{align} $
Jadi, panjang $ x = 4 $.

2). Perhatikan gambar berikut,

Tentukan nilai $ y $?
Penyelesaian :
*). Panjang PS = SR sesampai lalu $ \frac{PR}{RS} = \frac{2}{1} $.
*). Langsung kita gunakan dalil menelaus :
$ \begin{align} \frac{ST}{TU} . \frac{UQ}{QP} . \frac{PR}{RS} & = 1 \\ \frac{2}{y}. \frac{4x}{x} . \frac{2}{1} & = 1 \\ \frac{16}{y} & = 1 \\ y & = 16 \end{align} $
Jadi, panjang $ y = 16 $.

3). Diketahui gambar menyerupai berikut dengan BE : EC = 2 : 3
dan AB : FB = 5 : 3. Tentukan nilai AD : AC?

Penyelesaian :
*). Nilai AB : FB = 5 : 3 sesampai lalu AF : FB = 8 : 3 .
*). Langsung kita gunakan dalil menelaus :
$ \begin{align} \frac{BE}{EC} . \frac{CD}{DA} . \frac{AF}{FB} & = 1 \\ \frac{2}{3} . \frac{CD}{DA} . \frac{8}{3} & = 1 \\ \frac{CD}{DA} . \frac{16}{9} & = 1 \\ \frac{CD}{DA} & = \frac{9}{16} \end{align} $
Karena nilai CD : DA = 9 : 16 , maka AD : AC = 16 : 25.
Jadi, nilai AD : AC = 16 : 26 .

4). Pada segitiga ABC, titik D terletak pada sisi AB dengan perbandingan AD : DB = 2 : 3 dan titik E terletak pada sisi BC dengan perbandingan BE : EC = 5 : 4 menyerupai gambar berikut.

Tentukan :
a). perbandingan luas AOD dan luas COE,
b). perbandingan luas AOD dan luas segiempat EODB,
c). perbandingan luas AOC dan luas segiempat EODB.
Penyelesaian :
Kita memakai dalil Menelaus dan luas segitiga dengan tinggi sama.
*). perbandingan DO : OC dengan dalil Menelaus
$ \begin{align} \frac{DO}{OC} . \frac{CE}{EB} . \frac{BA}{DA} & = 1 \\ \frac{DO}{OC} . \frac{4}{5} . \frac{5}{2} & = 1 \\ \frac{DO}{OC} . 2 & = 1 \\ \frac{DO}{OC} & = \frac{1}{2} \end{align} $
*). perbandingan EO : OA dengan dalil Menelaus
$ \begin{align} \frac{EO}{OA} . \frac{AD}{DB} . \frac{BC}{EC} & = 1 \\ \frac{EO}{OA} . \frac{2}{3} . \frac{9}{4} & = 1 \\ \frac{EO}{OA} . \frac{3}{2} & = 1 \\ \frac{EO}{OA} & = \frac{2}{3} \end{align} $
Sesampai lalu gambar kompleksnya :

*). Misalkan [ABC] menyatakan luas segitiga ABC.
Kita misalkan juga luas AOD merupakan $ [AOD]= x $.
*). Perhatikan segitiga ADC,
$\Delta$AOD dengan bantalan DO dan $\Delta$AOC dengan bantalan OC terdapat tinggi yang sama yaitu misalkan $t_1$.
$ \begin{align} \frac{[AOC]}{[AOD]} & = \frac{\frac{1}{2}.OC.t_1}{\frac{1}{2}.DO.t_1} \\ \frac{[AOC]}{x} & = \frac{ OC }{DO} \\ \frac{[AOC]}{x} & = \frac{ 2 }{1} \\ [AOC] & = 2x \end{align} $
*). Perhatikan segitiga ACE,
$\Delta$AOC dengan bantalan AO dan $\Delta$COE dengan bantalan OE terdapat tinggi yang sama yaitu misalkan $t_2$.
$ \begin{align} \frac{[COE]}{[AOC]} & = \frac{\frac{1}{2}.OE.t_2}{\frac{1}{2}.AO.t_2} \\ \frac{[COE]}{2x} & = \frac{ OE }{AO} \\ \frac{[COE]}{2x} & = \frac{ 2 }{3} \\ [COE] & = \frac{4}{3}x \end{align} $
sesampai lalu : [ACD] = [AOD] + [AOC] = $ x + 2x = 3x $.
*). Perhatikan segitiga ABC,
$\Delta$ACD dengan bantalan AD dan $\Delta$BCD dengan bantalan DB terdapat tinggi yang sama yaitu misalkan $t_3$.
$ \begin{align} \frac{[BCD]}{[ACD]} & = \frac{\frac{1}{2}.DB.t_3}{\frac{1}{2}.AD.t_3} \\ \frac{[COE] + [EODB]}{3x} & = \frac{ DB }{AD} \\ \frac{\frac{4}{3}x + [EODB]}{3x} & = \frac{3 }{2} \\ \frac{4}{3}x + [EODB] & = \frac{9}{2}x \\ [EODB] & = \frac{9}{2}x – \frac{4}{3}x \\ [EODB] & = \frac{19}{6}x \end{align} $

Baca Juga:   Panjang Garis-Garis Istimewa Pada Segitiga

*). Menentukan perbandingan masing-masing soal,
a). perbandingan luas AOD dan luas COE,
$ \begin{align} \frac{[AOD]}{[COE]} = \frac{x}{\frac{4}{3}x} = \frac{3}{4} \end{align} $.
b). perbandingan luas AOD dan luas segiempat EODB,
$ \begin{align} \frac{[AOD]}{[EODB]} = \frac{x}{\frac{19}{6}x } = \frac{6}{19} \end{align} $.
c). perbandingan luas AOC dan luas segiempat EODB.
$\begin{align} \frac{[AOC]}{[EODB]} = \frac{2x}{\frac{19}{6}x } = \frac{12}{19} \end{align} $.

Cara II :
untuk soal 4 bab (b). perbandingan luas AOD dan luas segiempat EODB
Perhatikan gambar berikut, kita tarik garis DE.

*). Misalkan luas AOD merupakan $ [AOD]=x$,
*). Perhatikan segitiga ADE,
$\Delta$AOD dengan bantalan AO dan $\Delta$DOE dengan bantalan OE terdapat tinggi yang sama yaitu misalkan $t_1$.
$ \begin{align} \frac{[DOE]}{[AOD]} & = \frac{\frac{1}{2}.OE.t_1}{\frac{1}{2}.AO.t_1} \\ \frac{[DOE]}{x} & = \frac{ OE }{ AO } \\ \frac{[DOE]}{x} & = \frac{ 2 }{ 3 } \\ [DOE] & = \frac{ 2 }{ 3 }x \end{align} $
sesampai lalu : [ADE] = [AOD] + [DOE] = $ x + \frac{ 2 }{ 3 }x = \frac{ 5 }{ 3 }x $.
*). Perhatikan segitiga AEB,
$\Delta$AED dengan bantalan AD dan $\Delta$BED dengan bantalan DB terdapat tinggi yang sama yaitu misalkan $t_2$.
$ \begin{align} \frac{[BED]}{[AED]} & = \frac{\frac{1}{2}.DB.t_2}{\frac{1}{2}.AD.t_2} \\ \frac{[BED]}{\frac{ 5 }{ 3 }x} & = \frac{ DB }{ AD } \\ \frac{[BED]}{\frac{ 5 }{ 3 }x} & = \frac{ 3 }{ 2 } \\ [BED] & = \frac{ 3 }{ 2 } . \frac{ 5 }{ 3 }x \\ [BED] & = \frac{ 5 }{ 2 }x \end{align} $
sesampai lalu : [EODB] = [BED] + [DOE] = $ \frac{ 5 }{ 2 }x + \frac{ 2 }{ 3 }x = \frac{ 19 }{ 6 }x $.
*). perbandingan luas AOD dan luas segiempat EODB,
$ \begin{align} \frac{[AOD]}{[EODB]} = \frac{x}{\frac{19}{6}x } = \frac{6}{19} \end{align} $.

Pembuktian Dalil Menelaus pada Segitiga
       Untuk menunjukan dalil menelaus pada segitiga, ada tiga cara pembuktian yang akan ditampilkan pada artikel ini yaitu menggunakan kesebangunan, memakai luas segitiga, dan menggunakan hukum sinus pada segitiga.

       Pada dalil menelaus terdapat kata “apabila dan hanya apabila“, artinya pembuktiannya ada dua arah yaitu dari kiri dan dari kanan , kedua arah harus dibuktikan.
Pembuktian dari kiri ke kanan :
Jika titik D, E, dan F segaris (Kolinear),
maka berlaku $ \, \frac{BE}{EC}\times \frac{CD}{DA}\times \frac{AF}{FB} = 1 $
.
Pembuktian dari kanan ke kiri :
Jika berlaku $ \, \frac{BE}{EC}\times \frac{CD}{DA}\times \frac{AF}{FB} = 1 , \, $
maka titik D, E, dan F segaris (Kolinear)
.

Baca Juga:   Panjang Garis Bagi Pada Segitiga Dan Pembuktiannya

Pembuktian Dari kiri ke kanan
Jika titik D, E, dan F segaris (Kolinear),
maka berlaku $ \, \frac{BE}{EC}\times \frac{CD}{DA}\times \frac{AF}{FB} = 1 $
.

Pembuktian Dalil Menelaus pada Segitiga Dengan Konsep Kesebangunan
       Proyeksi titik A, B, dan C pada garis DEF, akan diperoleh menyerupai gambar berikut.

Hasil proyeksi titik A pada garis DEF merupakan titik P.
Hasil proyeksi titik B pada garis DEF merupakan titik R.
Hasil proyeksi titik C pada garis DEF merupakan titik Q.

Dua berdiri datar dikatakan sebangun apabila perbandingan sisi yang bersesuaian sama.
*). $\Delta $BER sebangun dengan $\Delta $QEC , sesampai lalu :
perbandingannya : $ \frac{BE}{EC} = \frac{BR}{QC} \, $ ….pers(i).
*). $\Delta $CDQ sebangun dengan $\Delta $ADP , sesampai lalu :
perbandingannya : $ \frac{CD}{DA} = \frac{QC}{PA} \, $ ….pers(ii).
*). $\Delta $BRF sebangun dengan $\Delta $APF , sesampai lalu :
perbandingannya : $ \frac{AF}{FB} = \frac{PA}{BR} \, $ ….pers(iii).
*). Kalikan ketiga perbandingan yang diperoleh :
$ \begin{align} \frac{BE}{EC}\times \frac{CD}{DA}\times \frac{AF}{FB} & = \frac{BR}{QC}\times \frac{QC}{PA}\times \frac{PA}{BR} = 1 \end{align} $
Jadi, terbukti bahwa Jika titik D, E, dan F segaris (Kolinear),
maka berlaku $ \, \frac{BE}{EC}\times \frac{CD}{DA}\times \frac{AF}{FB} = 1 $
.

Pembuktian Dalil Menelaus pada Segitiga dengan Luas segitiga
       Perpanjang garis ED, lalu beri titik P dan Q serta relasi sedikit titik menyerupai gambar berikut.

*). Kita misalkan $ [ABC] \, $ menyatakan luas segitiga ABC.
*). Menentukan perbandingan BE : EC .
*). Perhatikan $\Delta$BPC,
$\Delta$BPE dengan bantalan BE dan $\Delta$EPC dengan bantalan EC terdapat tinggi yang sama misalkan $ \, t_1 $.
$ [BPE] = \frac{1}{2}.BE . t_1 \, $ dan $ [EPC] = \frac{1}{2}.EC.t_1 $
*). Perhatikan $\Delta$BQC,
$\Delta$BQE dengan bantalan BE dan $\Delta$EQC dengan bantalan EC terdapat tinggi yang sama misalkan $ \, t_2 $.
$ [BQE] = \frac{1}{2}.BE . t_2 \, $ dan $ [EQC] = \frac{1}{2}.EC.t_2 $
*). Menentukan luas segitiga BQP dan luas segitiga CQP .
$ [BQP] = [BQE]-[BPE] $.
$ [BQP] = \frac{1}{2}.BE.t_2 – \frac{1}{2}.BE . t_1 = \frac{1}{2}.BE . (t_2 – t_1) $.
$ [CQP] = [EQC]-[EPC] $ .
$ [CQP] = \frac{1}{2}.EC.t_2 – \frac{1}{2}.EC.t_1 = \frac{1}{2}.EC.(t_2-t_1) $ .
*). Perbandingan BE : EC ,
$ \begin{align} \frac{[BQP]}{[CQP]} & = \frac{\frac{1}{2}.BE . (t_2 – t_1)}{\frac{1}{2}.EC.(t_2-t_1)} \\ \frac{[BQP]}{[CQP]} & = \frac{BE}{EC} \end{align} $
Kita peroleh : $ \frac{BE}{EC} = \frac{[BQP]}{[CQP]} \, $ ….pers(a).

Dengan cara yang sama kita peroleh :
*). Menggunakan segitiga APC dan segitiga AQC kita peroleh,
Perbandingan : $ \frac{CD}{DA} = \frac{[CQP]}{[AQP]} \, $ ….pers(b).
*). Menggunakan segitiga APF dan segitiga AQF kita peroleh,
Perbandingan : $ \frac{AF}{FB} = \frac{[AQP]}{[BQP]} \, $ ….pers(c).

Baca Juga:   Dalil Titik Tengah Dan Intercep Segitiga

*). Kalikan ketiga perbandingan yang diperoleh :
$ \begin{align} \frac{BE}{EC}\times \frac{CD}{DA}\times \frac{AF}{FB} & = \frac{[BQP]}{[CQP]} \times \frac{[CQP]}{[AQP]} \times \frac{[AQP]}{[BQP]} = 1 \end{align} $
Jadi, terbukti bahwa Jika titik D, E, dan F segaris (Kolinear),
maka berlaku $ \, \frac{BE}{EC}\times \frac{CD}{DA}\times \frac{AF}{FB} = 1 $
.

Pembuktian Dalil Menelaus pada Segitiga dengan Aturan Sinus
       Perhatikan gambar berikut,

untuk hukum sinus, silahkan baca materinya di “Penerapan Trigonometri pada Segitiga : Aturan Sinus, Aturan Cosinus, Luas Segitiga“.

Kita terapkan hukum sinus pada segitiga yang ada berikut,
*). Segitiga CDE,
$ \frac{CE}{\sin \angle CDE} = \frac{CD}{\sin \angle CED} \rightarrow \frac{CD}{CE} = \frac{\sin \angle CED}{\sin \angle CDE} \, $ ….pers(1).
*). Segitiga ADF,
$ \frac{AF}{\sin \angle ADF} = \frac{AD}{\sin \angle AFD} \rightarrow \frac{AF}{AD} = \frac{\sin \angle ADF}{\sin \angle AFD} \, $ ….pers(2).
*). Segitiga BEF,
$ \frac{EB}{\sin \angle EFB} = \frac{FB}{\sin \angle BEF} \rightarrow \frac{EB}{FB} = \frac{\sin \angle EFB}{\sin \angle BEF} \, $ ….pers(3).
Catatan :
$ \sin \angle CED = \sin \angle BEF , \, \sin \angle EFB = \sin \angle AFD $.
dan $ \sin \angle ADF = \sin (180^\circ – \angle CDE ) = \sin \angle CDE $.
*). Kalikan ketiga persamaan yang diperoleh :
$ \begin{align} \frac{CD}{CE} . \frac{AF}{AD} . \frac{EB}{FB} & = \frac{\sin \angle CED}{\sin \angle CDE} . \frac{\sin \angle ADF}{\sin \angle AFD} . \frac{\sin \angle EFB}{\sin \angle BEF} \\ \frac{BE}{EC}\times \frac{CD}{DA}\times \frac{AF}{FB} & = 1 \end{align} $
Jadi, terbukti bahwa Jika titik D, E, dan F segaris (Kolinear),
maka berlaku $ \, \frac{BE}{EC}\times \frac{CD}{DA}\times \frac{AF}{FB} = 1 $
.

Pembuktian dari kanan ke kiri
Jika berlaku $ \, \frac{BE}{EC}\times \frac{CD}{DA}\times \frac{AF}{FB} = 1 , \, $
maka titik D, E, dan F segaris (Kolinear)
.

       Sebelumnya telah terbukti dari kiri ke kanan :
Jika titik D, E, dan F segaris (Kolinear),
maka berlaku $ \, \frac{BE}{EC}\times \frac{CD}{DA}\times \frac{AF}{FB} = 1 $
.

Misalkan perpanjangan garis DE pada perpanjangan sisi AB di titik F’, cukup kita tunjukkan F = F’.
Dari pembuktian dari kiri ke kanan, maka berlaku :
$ \frac{BE}{EC}\times \frac{CD}{DA}\times \frac{AF’}{F’B} = 1 \, $ ….pers(i).
Sementara dari arah kanan ke kiri berlaku :
$ \frac{BE}{EC}\times \frac{CD}{DA}\times \frac{AF}{FB} = 1 \, $ ….pers(ii).
Dari pers(i) dan pers(ii), kita peroleh :
$ \frac{AF’}{F’B} = \frac{AF}{FB} $
artinya F = F’, sesampai lalu garis DEF’ berimpit dengan garis DEF alasannya ialah titik F dan F’ sama. Sesampai lalu terbukti bahwa titik D, E, dan F segaris (kolinear), atau lebih kompleksnya :
Jika berlaku $ \, \frac{BE}{EC}\times \frac{CD}{DA}\times \frac{AF}{FB} = 1 , \, $
maka titik D, E, dan F segaris (Kolinear)
.

Catatan :
Dalil Ceva juga sanggup dibuktikan dengan memakai konsep vektor. Silahkan baca artikelnya pada “Pembuktian Dalil Menenlaus dan Ceva dengan vektor“.