Konsep Binomial Newton (Ekspansi Newton)

Posted on

         Pondok Soal.com – Sebelumnya kita telah berguru bahan “Kombinasi pada Peluang dan Contohnya” yang merupakan bab dari kaidah pencacahan. Ternyata konsep kombinasi sanggup dikembangkan pada pembahasan Binomial. Pada artikel kali ini kita akan membahas lebih spesipik wacana Konsep Binomial Newton (Ekspansi Newton). Binomial Newton mempelajari wacana cara penjabaran(ekspansi) bentuk pangkat aljabar yang terdiri dari dua suku (binomial).

         Untuk menjabarkan bentuk pangkat aljabar dua suku sanggup memakai sigitiga Pascal ibarat berikut ini :

Dari bentuk segitiga pascal tersebut sanggup membantu dalam pembagian terstruktur mengenai pangkat dua suku berikut dimana angka-angka pada segitiga pascal merupakan koefisien dari setiap sukunya:
$ \begin{align} (a+b)^0 & = 1 \\ (a+b)^1 & = a + b \\ (a+b)^2 & = a^2 + 2ab + b^2 \\ (a+b)^3 & = a^3 + 3a^2b + 3ab^2 + b^3 \\ (a+b)^4 & = a^4 + 4a^3b + 6a^2b^2 + 4ab^3 + y^4 \\ (a+b)^5 & = a^5 + 5a^4b + 10a^3b^2 + 10a^2b^3 + 5ab^4 + b^5 \\ (a+b)^n & = ….. \end{align} $

         Tenamun ada metode lain yang lebih gampang diterapkan untuk mencari koefisien binomial adalah dengan memakai Konsep kombinasi $ C_r^n \, $ yang dinamakan Binomial Newton (Ekspansi Binomial), sesampai lalu segitiga pascal sanggup ditulis sebagai berikut.

Konsep Binomial Newton (Ekspansi Newton)
       Berikut merupakan rumus Binomial Newton secara umum :
$(a+b)^n = \displaystyle \sum_{r=0}^n C_r^n a^{n-r}b^r \, \, $
atau
$ (a+b)^n = C_0^n a^n + C_1^n a^{n-1}b + … + C_{n-1}^nab^{n-1} + C_n^nb^n $
dengan $ n, \, r \, $ merupakan bilangan asli.

Keterangan :
Bentuk $ \displaystyle \sum_{r=0}^n \, $ disebut notasi sigma yang merupakan pejumlahan.
Berikut sedikit teladan notasi sigma :
$ \displaystyle \sum_{r=0}^3 r^2 = 0^2 + 1^2 + 2^2 + 3^3 $
$ \displaystyle \sum_{i=2}^5 (2i+1) = (2.2+1) + (2.3+1) + (2.4+1) + (2.5+1) $
$ \displaystyle \sum_{k=1}^9 (k^3 + k) = (1^3 + 1) + (2^3 + 2) + (3^3 + 3) + (4^3 + 4) + … + (9^3 + 9) $

Contoh Soal Binomial Newton (Ekspansi Binomial) :
Untuk memudahkan menghitung bentuk kombinasi, silahkan baca bahan kombinasi pada artikel “kombinasi pada peluang“.

1). Jabarkan bentuk binomial berikut ini:
a). $ (x+2)^4 $
b). $ (2a + 3b)^3 $
c). $ (a – 2b)^3 $
d). $ \left( x + \frac{2}{x} \right)^5 $
Penyelesaian :
a). $ (x+2)^4 \, $ artinya $ n = 4 $
$ \begin{align} (a+b)^n & = \displaystyle \sum_{r=0}^n C_r^n a^{n-r}b^r \\ (x+2)^4 & = \displaystyle \sum_{r=0}^4 C_r^4 x^{4-r}2^r \\ & = C_0^4 x^{4-0}2^0 + C_1^4 x^{4-1}2^1 + C_2^4 x^{4-2}2^2 + C_3^4 x^{4-3}2^3 + C_4^4 x^{4-4}2^4 \\ & = 1. x^{4}.1 + 4. x^{3}.2 + 6. x^{2}.4 + 4. x^{1}.8 + 1. x^{0}.16 \\ (x+2)^4 & = x^{4} + 8x^{3} + 24 x^{2} + 32x + 16 \end{align} $

Baca Juga:   Aturan Perkalian, Hukum Penjumlahan, Dan Faktorial

b). $ (2a + 3b)^3 \, $ artinya $ n = 3 $
$ \begin{align} (x+y)^n & = \displaystyle \sum_{r=0}^n C_r^n x^{n-r}y^r \\ (2a + 3b)^3 & = \displaystyle \sum_{r=0}^3 C_r^3 (2a)^{3-r}(3b)^r \\ & = C_0^3 (2a)^{3-0}(3b)^0 + C_1^3 (2a)^{3-1}(3b)^1 + C_2^3 (2a)^{3-2}(3b)^2 + C_3^3 (2a)^{3-3}(3b)^3 \\ & = 1. (2a)^{3} .1 + 3. (2a)^{2}(3b) + 3. (2a)^{1}(3b)^2 + 1. (2a)^{0}(3b)^3 \\ & = 1. 2^3.a^3 .1 + 3. 2^2.a^2.(3b) + 3. (2a).3^2.b^2 + 1. 1.3^3.b^3 \\ (2a + 3b)^3 & = 8a^3 + 36a^2b + 54ab^2 + 27b^3 \end{align} $

c). $ (a – 2b)^3 \, $ artinya $ n = 3 $
$ \begin{align} (x+y)^n & = \displaystyle \sum_{r=0}^n C_r^n x^{n-r}y^r \\ (a-2b)^3 & = (a + (-2b))^3 \displaystyle \sum_{r=0}^3 C_r^3 a^{3-r}(-2b)^r \\ & = C_0^3 a^{3-0}(-2b)^0 + C_1^3 a^{3-1}(-2b)^1 + C_2^3 a^{3-2}(-2b)^2 + C_3^3 a^{3-3}(-2b)^3 \\ & = 1. a^{3}.1 + 3. a^{2}(-2b) + 3. a^{1}(-2b)^2 + 1. a^{0}(-2b)^3 \\ & = a^{3} + 3. a^{2}(-2b) + 3. a.(-2)^2.b^2 + 1. 1.(-2)^3.b^3 \\ (a-2b)^3 & = a^{3} -6a^2b + 12ab^2 -8b^3 \end{align} $

d). $ \left( x + \frac{2}{x} \right)^5 \, $ artinya $ n = 5 $
$ \begin{align} (a+b)^n & = \displaystyle \sum_{r=0}^n C_r^n a^{n-r}b^r \\ \left( x + \frac{2}{x} \right)^5 & = \displaystyle \sum_{r=0}^5 C_r^5 x^{5-r} \left( \frac{2}{x} \right)^r \\ & = C_0^5 x^{5-0} \left( \frac{2}{x} \right)^0 + C_1^5 x^{5-1} \left( \frac{2}{x} \right)^1 + C_2^5 x^{5-2} \left( \frac{2}{x} \right)^2 \\ & + C_3^5 x^{5-3} \left( \frac{2}{x} \right)^3 + C_4^5 x^{5-4} \left( \frac{2}{x} \right)^4 + C_5^5 x^{5-5} \left( \frac{2}{x} \right)^5 \\ & = 1. x^{5} .1 + 5. x^{4} \left( \frac{2}{x} \right) + 10. x^{3} \left( \frac{2^2}{x^2} \right) \\ & + 10. x^{2} \left( \frac{2^3}{x^3} \right) + 5. x^{1} \left( \frac{2^4}{x^4} \right) + 1. x^{0} \left( \frac{2^5}{x^5} \right) \\ & = x^5 + 5. x^{4} \left( \frac{2}{x} \right) + 10. x^{3} \left( \frac{4}{x^2} \right) \\ & + 10. x^{2} \left( \frac{8}{x^3} \right) + 5. x^{1} \left( \frac{16}{x^4} \right) + 1. x^{0} \left( \frac{32}{x^5} \right) \\ & = x^5 + 10 x^{3} + 40 x^{1} \\ & + 80 \left( \frac{1}{x} \right) + 80 \left( \frac{1}{x^3} \right) + \left( \frac{32}{x^5} \right) \\ \left( x + \frac{2}{x} \right)^5 & = x^5 + 10 x^{3} + 40 x + \frac{80}{x} + \frac{80}{x^3} + \frac{32}{x^5} \end{align} $

Misalkan ada bentuk $ (2a + 3b)^3 \, $ yang sanggup dijabarkan menjadi :
$ \begin{align} (2a + 3b)^3 & = 8a^3 + 36a^2b + 54ab^2 + 27b^3 \end{align} $
Suku-suku dari perluasan binomial $ (2a + 3b)^3 \, $ merupakan :
Suku ke-1 : $ \begin{align} 8a^3 \end{align} \, $ dengan koefisiennya 8.
Suku ke-2 : $ \begin{align} 36a^2b \end{align} \, $ dengan koefisiennya 36.
Suku ke-3 : $ \begin{align} 54ab^2 \end{align} \, $ dengan koefisiennya 54.
Suku ke-4 : $ \begin{align} 27b^3 \end{align} \, $ dengan koefisiennya 27.
Tentu kita tak perlu menjabarkan sejara keseluruhan suku-sukunya apabila hanya memilih suku tertentu saja. Misalkan kita ingin mencari suku ke-2 dari bentuk binomial $ (2a + 3b)^3 \, $ , maka kita peroleh :
Suku ke-2 dengan $ k = 2 $ :
$ \begin{align} C_{(k-1)}^n x^{n-(k-1)}y^{k-1} & = C_{(2-1)}^3 (2a)^{3-(2-1)}(3b)^{2-1} \\ & = C_{1}^3 (2a)^{2}(3b)^{1} \\ & = 3. 4.a^2 .3b = 36a^2b \end{align} $.
artinya suke ke-2 dari binomial $ (2a + 3b)^3 \, $ merupakan $ 36a^2b \, $ yang sesuai dengan bentuk di atasnya.

Contoh soal koefisien binomial :
2). Tentukan suku ke-3 dari binomial $ (2x – 5y)^{20} \, $ dan besar koefisiennya.
Penyelesaian :
*). Bentuk binomialnya : $ (2x – 5y)^{20} \, $ artinya $ n = 20 $.
*). Yang diminta suku ke-3 artinya $ k = 3 $.
Rumus suku ke-$k \, $ merupakan $ \, C_{(k-1)}^n a^{n-(k-1)}b^{k-1} $ .
Suku ke-2 adalah dari $ (2x – 5y)^{20} = (2x + (- 5y))^{20} \, $ :
$ \begin{align} C_{(k-1)}^n a^{n-(k-1)}b^{k-1} & = C_{(3-1)}^{20} (2x)^{20-(3-1)}(-5y)^{3-1} \\ & = C_{2}^{20} (2x)^{18}(-5y)^{2} \\ & = \frac{20!}{(20-2)!2!} . 2^{18}.x^{18}(-5)^2.y^{2} \\ & = \frac{20!}{18!2!} . 2^{18}.x^{18}.25.y^{2} \\ & = \frac{20.19.18!}{18!.2.1} . 2^{18}.x^{18}.25.y^{2} \\ & = \frac{20.19}{2} . 2^{18}.x^{18}.25.y^{2} \\ & = 190 . 2^{18}.x^{18}.25.y^{2} \\ & = (190 \times 2^{18} \times 25). x^{18}y^{2} \\ & = 4750 \times 2^{18} x^{18}y^{2} \end{align} $.
Sesampai lalu suku ke-3 dari $ (2x – 5y)^{20} \, $ merupakan $ \, 4750 \times 2^{18} x^{18}y^{2} \, $ dengan koefisiennya merupakan $ 4750 \times 2^{18} $.

Untuk soal nomor 3 dan nomor 4 berikut gunakan sedikit sifat eksponen :
$ \frac{1}{a^n} = a^{-n} \, $ dan $ \, a^m . a^n = a^{m+n} $

3). Diketahi bentuk binomial $ (3a + b)^{50} \, $. Tentukan koefisien dari suku yang berbentuk $ a^{26}b^{24} \, $ dan terletak pada suku ke berapakah suku tersebut.
Penyelesaian :
*). Bentuk $ (3a + b)^{50} \, $ , artinya $ n = 50 $.
*). Rumus suku ke-$k $ merupakan $ C_{(k-1)}^n a^{n-(k-1)}b^{k-1} \, $ sesampai lalu sama dengan $ a^{26}b^{24} $.
$ \begin{align} a^{n-(k-1)}b^{k-1} & = a^{26}b^{24} \\ a^{50-(k-1)}b^{k-1} & = a^{26}b^{24} \\ a^{50-(k-1)}b^{k-1} & = a^{26}b^{24} \end{align} $.
Dari persamaan terakhir di atas diperoleh : $ k – 1 = 24 \rightarrow k = 25 $.
Artinya bentuk $ a^{26}b^{24} \, $ merupakan suku ke-25.
*). Menentukan koefisien suku ke-25 dengan $ k = 25 $ dari bentuk $ (3a + b)^{50} \, $
$ \begin{align} C_{(k-1)}^n x^{n-(k-1)}x^{k-1} & = C_{(25-1)}^{50} (3a)^{50-(25-1)}(b)^{25-1} \\ & = C_{24}^{50} (3a)^{26}(b)^{24} \\ & = C_{24}^{50} 3^{26}a^{26}b^{24} \end{align} $.
Jadi, koefisien dari bentuk $ a^{26}b^{24} \, $ merupakan $ C_{24}^{50} \times 3^{26} $.

Baca Juga:   Apa Bedanya Permutasi Dan Kombinasi Pada Peluang

4). Diketahui bentuk binomial $ \left( x – \frac{1}{x} \right)^{2019} \, $ . Tentukan suku yang memuat bentuk $ x^{16} \, $ dan besar koefisiennya.
Penyelesaian :
*). Bentuk $ \left( x – \frac{1}{x} \right)^{2019} \, $ , artinya $ n = 2019 $.
*). Rumus suku ke-$k $ merupakan $ C_{(k-1)}^n a^{n-(k-1)}b^{k-1} \, $ sesampai lalu sama dengan $ x^{16} $.
Bentuk $ \left( x – \frac{1}{x} \right)^{2019} = \left( x + (- \frac{1}{x} ) \right)^{2019} \, $ artinya $ a = x \, $ dan $ b = – \frac{1}{x} = -x^{-1} $.
$ \begin{align} a^{n-(k-1)}b^{k-1} & = x^{16} \\ x^{2019-(k-1)}\left( -x^{-1} \right)^{k-1} & = x^{16} \\ x^{2019-k} . (-1)^{k-1} . \left( x^{-1} \right)^{k-1} & = x^{16} \\ (-1)^{k-1} . x^{2019-k} . \left( x \right)^{1-k} & = x^{16} \\ (-1)^{k-1} . x^{(2019-k)+(1-k)} & = x^{16} \\ (-1)^{k-1} . x^{2019 – 2k} & = x^{16} \\ \end{align} $.
Dari persamaan terakhir di atas diperoleh : $ 2019 – 2k = 16 \rightarrow k = 1001 $.
Artinya bentuk $ x^{16} \, $ merupakan suku ke-1001.
*). Menentukan koefisien suku ke-1001 dengan $ k = 1001 $ dari bentuk $ \left( x – \frac{1}{x} \right)^{2019} \, $
$ \begin{align} C_{(k-1)}^n a^{n-(k-1)}b^{k-1} & = C_{(1001-1)}^{2019} (x)^{2019-(1001-1)}(-x^{-1})^{1001-1} \\ & = C_{1000}^{2019} (x)^{1016}(-x^{-1})^{1000} \\ & = C_{1000}^{2019} (x)^{1016}(x^{-1})^{1000} \\ & = C_{1000}^{2019} (x)^{1016}(x)^{-1000} \\ & = C_{1000}^{2019} (x)^{1016 + (-1000)} \\ & = C_{1000}^{2019} x^{16} \end{align} $.
Jadi, koefisien dari bentuk $ x^{16} \, $ merupakan $ C_{1000}^{2019} $.