Menentukan Titik Berat Segitiga

Posted on

         Pondok Soal.com – Pada artikel ini kita akan membahas bahan Menentukan Titik Berat Segitiga. Pada segitiga terdapat garis-garis istimewa menyerupai garis sumbu, garis tinggi, garis bagi, dan garis berat, dimana rumus-rumus panjangnya sanggup teman-teman baca pada artikel “Panjang Garis-garis spesial pada Segitiga” serta pembuktiannya pada artikel “Panjang Garis Berat pada Segitiga dan Pembuktiannya“. Garis berat segitiga ada tiga yang ditarik dari masing-masing ketiga titik sudut segitiga. Perpotongan ketiga garis berat tersebut pada sebuah titik disebut titik berat segitiga. Bagaimana cara Menentukan Titik Berat Segitiga tersebut? Untuk Menentukan Titik Berat Segitiga, salah satunya memakai penerapan materi vektor ialah “perbandingan vektor pada ruas garis“. Hal-hal yang harus kita kuasai untuk mempermudah mempelajari bahan Menentukan Titik Berat Segitiga ini ialah “pengertian vektor“, “panjang vektor“, “vektor posisi“, “kesamaan dua vektor, sejajar, dan segaris (kelipatan)“, “penjumlahan dan pengurangan vektor“, dan “persobat semua vektor dengan skalar“.

Peengertian garis berat dan titik berat
$ \spadesuit \, $ Pengertian garis berat segitiga
       Garis berat sebuah segitiga merupakan garis yang melalui sebuah titik sudut dan membagi sisi didepan sudut menjadi dua bab sama panjang. Pada gambar di atas, yang termasuk garis berat merupakan garis AE, garis BD, dan garis CF.

$ \spadesuit \, $ Pengertian titik berat segitiga
       Titik berat segitiga merupakan titik perpotongan antara ketiga garis berat segitiga. Pada gambar di atas, titik P merupakan titik berat segitiga ABC.

Perbandingan ruas garis pada titik berat segitiga
       Perhatikan gambaran gambar di atas, masing-masing garis berat terhadap titik berat (titik P) terdapat perbandingan $ 2 : 1 $ ialah $ AP : PE = 2 : 1 $ , $ BP : PD = 2 : 1 $, dan $ CP : PF = 2 : 1 $.

Rumus memilih titik berat segitiga
$ \clubsuit \, $ Vektor di R$^2$
       Misalkan terdapat segitiga ABC dengan koordinat masing-masing titik sudutnya $ A(x_1,y_1) $ , $ B(x_2,y_2) $ , dan $ C(x_3,y_3) $. Titik berat segitiga ABC sanggup kita tentukan dengan rumus :
Titik berat $ = \left( \frac{x_1+x_2+x_3}{3} , \frac{y_1+y_2+y_3}{3} \right) $

$ \clubsuit \, $ Vektor di R$^3$
       Misalkan terdapat segitiga ABC dengan koordinat masing-masing titik sudutnya $ A(x_1,y_1,z_1) $ , $ B(x_2,y_2,z_2) $ , dan $ C(x_3,y_3,z_3) $. Titik berat segitiga ABC sanggup kita tentukan dengan rumus :
Titik berat $ = \left( \frac{x_1+x_2+x_3}{3} , \frac{y_1+y_2+y_3}{3} , \frac{z_1+z_2+z_3}{3} \right) $

Catatan :
Untuk pembuktian teori di atas, silahkan teman-teman lihat di bab bawah sesudah contoh-contoh soalnya.

Contoh soal Menentukan Titik Berat Segitiga :

1). Tentukan koordinat titik berat segitiga ABC dengan koordinat masing-masing titik sudut $ A(-1,2) $ , $ B(3, -2) $ , dan $ C(1,6) $ !
Penyelesaian :
*). Titik berat $ \Delta$ABC ialah :
$ \begin{align} \text{Titik berat } & = \left( \frac{x_1+x_2+x_3}{3} , \frac{y_1+y_2+y_3}{3} \right) \\ & = \left( \frac{-1 + 3 + 1}{3} , \frac{2 + (-2) + 6}{3} \right) \\ & = \left( \frac{3}{3} , \frac{6}{3} \right) \\ & = \left( 1 , 2 \right) \end{align} $
Jadi, titik berat segitiga ABC merupakan $ (1,2 ) . \, \heartsuit $.

Baca Juga:   Aplikasi Vektor Pada Bangkit Ruang Dan Datar

2). Diketahui $ \Delta$PQR dengan koordinat titik sudut $ P(1, -2,3) $ , $ Q(5, 1, -1) $ , dan $ R(-3, -5, 4) $. Tentukan koordinat titik berat segitiga PQR tersebut!
Penyelesaian :
$ \begin{align} \text{Titik berat } & = \left( \frac{x_1+x_2+x_3}{3} , \frac{y_1+y_2+y_3}{3} , \frac{z_1+z_2+z_3}{3} \right) \\ & = \left( \frac{1 + 5 + (-3)}{3} , \frac{-2 + 1 + (-5)}{3} , \frac{3 + (-1) + 4}{3} \right) \\ & = \left( \frac{3}{3} , \frac{-6}{3} , \frac{6}{3} \right) \\ & = \left( 1 , -2 , 2 \right) \end{align} $
Jadi, titik berat segitiga PQR merupakan $ (1 , -2 , 2 ) . \, \heartsuit $.

3). Segitiga KLM terdapat titik sudut $ K(p,1,2) $, $ L(1, q, -1) $ , dan $ M(3, 0 , r) $. Jika titik berat segitiga KLM merupakan $ (1,1,-1) $ , maka tentukan koordinat titik sudut K, L, dan M serta tentukan nilai $ ( p + 2q + r)^{2019} $!
Penyelesaian :
*). Menentukan nilai $ p , q, r $ dari titik beratnya :
$ \begin{align} \text{Titik berat } & = (1,1,-1) \\ \left( \frac{x_1+x_2+x_3}{3} , \frac{y_1+y_2+y_3}{3} , \frac{z_1+z_2+z_3}{3} \right) & = (1,1,-1) \\ \left( \frac{p+1+3}{3} , \frac{1+q+0}{3} , \frac{2+ (-1) + r}{3} \right) & = (1,1,-1) \\ \left( \frac{p+4}{3} , \frac{1+q}{3} , \frac{1 + r}{3} \right) & = (1,1,-1) \end{align} $
*). Dari kesamaan dua buah vektor, kita peroleh :
$ \frac{p+4}{3} = 1 \rightarrow p + 4 = 3 \rightarrow p = -1 $
$ \frac{1+q}{3} = 1 \rightarrow 1 + q = 3 \rightarrow q = 2 $
$ \frac{1 + r}{3} = -1 \rightarrow 1 + r = -3 \rightarrow r = -4 $
Sesampai kemudian koordinat masing-masing titik sudut segitiga KLM ialah :
$ K(p,1,2) = (-1,1,2) $ , $ L(1, q, -1) = (1, 2, -1) $, dan $ M(3, 0 , r) = (3, 0 , -4) $.
*). Menentukan nilai $ ( p + 2q + r)^{2019} $ :
$ ( p + 2q + r)^{2019} = ( -1 + 2.2 + (-4))^{2019} = (-1)^{2019} = -1 $.
Jadi, nilai $ ( p + 2q + r)^{2019} = -1 . \, \heartsuit $

4). Diketahui persegipanajng ABCD dengan $ A(0,0) $ , $ B(3,0) $ , $ C(3,6) $ , dan $ D(0,6) $. Jika titik P merupakan titik berat segitiga ABC dan titik Q merupakan titik berat segitiga ACD, maka tentukan :
a). Panjang PQ,
b). Apakah titik P dan Q terletak pada bidang diagonal BD?
Penyelesaian :
*). Ilustrasi gambar.

a). Panjang PQ,
-). Menentukan titik berat segitiga ABC :
$ \begin{align} \text{Titik berat } & = \left( \frac{x_1+x_2+x_3}{3} , \frac{y_1+y_2+y_3}{3} \right) \\ & = \left( \frac{0 + 3 + 3}{3} , \frac{0 + 0 + 6}{3} \right) \\ & = \left( \frac{6}{3} , \frac{6}{3} \right) \\ & = \left( 2 , 2 \right) \end{align} $
sesampai kemudian titik P(2,2)
-). Menentukan titik berat segitiga ACD :
$ \begin{align} \text{Titik berat } & = \left( \frac{x_1+x_2+x_3}{3} , \frac{y_1+y_2+y_3}{3} \right) \\ & = \left( \frac{0 + 3 + 0}{3} , \frac{0 + 6 + 6}{3} \right) \\ & = \left( \frac{3}{3} , \frac{12}{3} \right) \\ & = \left( 1 , 4 \right) \end{align} $
sesampai kemudian titik Q(1,4)
-). Menentukan panjang PQ dimana P(2,2) dan Q(1,4) :
$ |PQ| = \sqrt{(1-2)^2 + (4-2)^2} = \sqrt{1 + 4} = \sqrt{5} $.
Jadi, panjang PQ merupakan $ \sqrt{5} \, $ satuan panjang.

Baca Juga:   Materi Vektor Tingkat Sma

b). Apakah titik P dan Q terletak pada bidang diagonal BD?
*). Untuk mengetahui terletak atau taknya titik pada sebuah garis, cuku kita cek apakah titik-titik tersebut segaris (kolinear) atau tak. Titik K, L , dan M segaris apabila $ \vec{KL} = k \vec{LM} $ (salah satu vektor merupakan kelipatan dari vektor yang lainnya).
-). Apakah titik $ B(3,0) $ , $ P(2,2) $ dan $ D(0,6) $ segaris? mari kita cek :
$ \begin{align} \vec{BP} & = k \vec{PD} \\ \vec{p} – \vec{b} & = k ( \vec{d} – \vec{p} ) \\ (2,2) – (3,0) & = k ( (0,6) – (2,2) ) \\ (-1, 2) & = k ( -2 , 4 ) \\ (-1, 2) & = ( -2k , 4k ) \end{align} $
Kita peroleh :
$ -2k = -1 \rightarrow k = \frac{1}{2} $
$ 4k = 2 \rightarrow k = \frac{1}{2} $
Karena terdapat nilai $ k $ yang sama maka berlaku $ \vec{BP} = k \vec{PD} \rightarrow \vec{BP} = \frac{1}{2} \vec{PD} $ , sesampai kemudian titik P segaris dengan titik B dan D, artinya titik berat P terletak pada bidang diagonal BD.
-). Apakah titik $ B(3,0) $ , $ Q(1,4) $ dan $ D(0,6) $ segaris? mari kita cek :
$ \begin{align} \vec{BQ} & = n \vec{QD} \\ \vec{q} – \vec{b} & = n ( \vec{d} – \vec{q} ) \\ (1,4) – (3,0) & = n ( (0,6) – (1,4) ) \\ (-2, 4) & = n ( -1 , 2 ) \\ (-2, 4) & = ( -n , 2n ) \end{align} $
Kita peroleh :
$ -n = -2 \rightarrow n = 2 $
$ 2n = 4 \rightarrow n = 2 $
Karena terdapat nilai $ n $ yang sama maka berlaku $ \vec{BQ} = n \vec{QD} \rightarrow \vec{BQ} = 2 \vec{QD} $ , sesampai kemudian titik Q segaris dengan titik B dan D, artinya titik berat Q terletak pada bidang diagonal BD.
Jadi, kesimpulannya titik berat P dan Q terletak pada bidang diagonal BD.

$ \spadesuit \, $ Pembuktian Perbandingan ruas garis pada titik berat segitiga
*). Perhatikan gambaran gambar berikut.

*). Untuk memilih perbandingan garis yang diminta, kita akan kerjakan dengan memakai konsep perbandingan vektor.
*). Dengan konsep titik-titik segaris (kolinear) , kita peroleh :
Misalkan $ \vec{AB} = \vec{q} $ dan $ \vec{AC} = \vec{p} $.
$ \vec{AF} = \frac{1}{2}\vec{AB} = \frac{1}{3}\vec{q} $ dan $ \vec{AD} = \frac{1}{2}\vec{AC} = \frac{1}{2}\vec{p} $.
-). Vektor $\vec{FP} $ segaris dengan $ \vec{FC} $ sesampai kemudian berlaku kelipatan :
$ \vec{FP} = n\vec{FC} \rightarrow \frac{\vec{FP}}{\vec{FC}} = \frac{n}{1} $ sesampai kemudian $ \frac{\vec{FP}}{\vec{PC}} = \frac{n}{1-n} $
-). Vektor $\vec{DP} $ segaris dengan $ \vec{DB} $ sesampai kemudian berlaku kelipatan :
$ \vec{DP} = m\vec{DB} \rightarrow \frac{\vec{DP}}{\vec{DB}} = \frac{m}{1} $ sesampai kemudian $ \frac{\vec{DP}}{\vec{PB}} = \frac{m}{1-m} $
-). Vektor $\vec{AP} $ segaris dengan $ \vec{AE} $ sesampai kemudian berlaku kelipatan :
$ \vec{AP} = x\vec{AE} \rightarrow \frac{\vec{AP}}{\vec{AE}} = \frac{x}{1} $ sesampai kemudian $ \frac{\vec{AP}}{\vec{PE}} = \frac{x}{1-x} $
*). Menentukan vektor $ \vec{AP} $ dari $ \vec{FP}:\vec{PC} = n : 1-n $
$ \vec{AP} = \frac{n\vec{AC} + (1-n)\vec{AF}}{n + (1-n)} = \frac{n\vec{p} + (1-n).\frac{1}{2}\vec{q}}{1} = n\vec{p} + \frac{1-n}{2}\vec{q} $.
*). Menentukan vektor $ \vec{AP} $ dari $ \vec{DP}:\vec{PB} = m : 1-m $
$ \vec{AP} = \frac{m\vec{AB} + (1-m)\vec{AD}}{m + (1-m)} = \frac{m\vec{q} + (1-m).\frac{1}{2}\vec{p}}{1} = m\vec{q} + \frac{1-m}{2}\vec{p} $.
*). Menentukan vektor $ \vec{AP} $ dari $ \vec{BE}:\vec{EC} = 1 : 1 $
$ \vec{AP} = x \vec{AE} = x \frac{\vec{AB} + \vec{AC}}{1 + 1} = x\frac{\vec{q} + \vec{p}}{2} = \frac{x}{2}\vec{q} + \frac{x}{2}\vec{p} $.
*). Ketiga bentuk vektor $ \vec{AP} $ di atas sama ialah :
$ \vec{AP} = n\vec{p} + \frac{1-n}{2}\vec{q} \, $ …. (i)
$ \vec{AP} = m\vec{q} + \frac{1-m}{2}\vec{p} \, $ …. (ii)
$ \vec{AP} = \frac{x}{2}\vec{q} + \frac{x}{2}\vec{p} \, $ …. (iii)
*). Menentukan nilai $ n , m , x $ dengan menyamakan koefisien vektor sejenis :
-). Bentuk (i) dan (iii) :
Koefisien $ \vec{p} \rightarrow n = \frac{x}{2} $
Koefisien $ \vec{q} \rightarrow \frac{1-n}{2} = \frac{x}{2} $
Artinya $ n = \frac{1-n}{2} \rightarrow 2n = 1- n \rightarrow 3n = 1 \rightarrow n = \frac{1}{3} $.
Nilai $ \frac{x}{2} = n \rightarrow \frac{x}{2} = \frac{1}{3} \rightarrow x = \frac{2}{3} $.
-). Pers(ii) dan (iii) dan gunakan $ x = \frac{2}{3} $ :
Koefisien $ \vec{q} \rightarrow m = \frac{x}{2} \rightarrow m = \frac{\frac{2}{3} }{2} = \frac{1}{3} $
Sesampai kemudian kita peroleh nilai :
$ n = \frac{1}{3}, m = \frac{1}{3} $ , dan $ x = \frac{2}{3} $
*). Menentukan perbandingan yang diminta :
$ \vec{AP}:\vec{PE} = x : 1-x = \frac{2}{3} : 1 – \frac{2}{3} = \frac{2}{3} : \frac{1}{3} = 2 : 1 $
$ \vec{BP}:\vec{PD} = 1 – m : m = 1 – \frac{1}{3} : \frac{1}{3} = \frac{2}{3} : \frac{1}{3} = 2 : 1 $
$ \vec{CP}:\vec{PF} = 1 – n : n = 1 – \frac{1}{3} : \frac{1}{3} = \frac{2}{3} : \frac{1}{3} = 2 : 1 $
Jadi, kita peroleh perbandingan $ AP : PE = 2 : 1 $ , $ BP : PD = 2 : 1 $, dan $ CP : PF = 2 : 1 $.

Baca Juga:   Perkalian Silang Dua Vektor

$ \clubsuit \, $ Pembuktian Rumus menentukan titik berat segitiga
       Misalkan titik A, B, C, P, dan E terdapat vektor posisi masing-masing $ \vec{a} $, $ \vec{b} $ , $ \vec{c} $ , $ \vec{p} $ , dan $ \vec{e} $ .
Paerhatikan gambar berikut :

-). Perhatikan perbandingan $ \vec{BE}:\vec{EC} = 1 : 1 $ , sesampai kemudian
$ \vec{e} = \frac{\vec{b} + \vec{c}}{2} $.
-). $\vec{AP} $ dan $ \vec{AE} $ segaris, sesampai kemudian :
$ \begin{align} \vec{AP} & = \frac{2}{3}\vec{AE} \\ \vec{p} – \vec{a} & = \frac{2}{3}( \vec{e} – \vec{a}) \\ \vec{p} & = \frac{2}{3} \vec{e} – \frac{2}{3}\vec{a} + \vec{a} \\ & = \frac{2}{3} . \frac{\vec{b} + \vec{c}}{2} + \frac{1}{3}\vec{a} \\ & = \frac{1}{3} (\vec{b} + \vec{c}) + \frac{1}{3}\vec{a} \\ & = \frac{1}{3} (\vec{a} + \vec{b} + \vec{c}) \end{align} $
Sesampai kemudian vektor posisi titik beratnya : $ \vec{p} = \frac{1}{3} (\vec{a} + \vec{b} + \vec{c}) $.

-). Vektor di R$^2$
       Misalkan terdapat segitiga ABC dengan koordinat masing-masing titik sudutnya $ A(x_1,y_1) $ , $ B(x_2,y_2) $ , dan $ C(x_3,y_3) $. RUmus titik berat segitiganya :
$ \begin{align} \vec{p} & = \frac{1}{3} (\vec{a} + \vec{b} + \vec{c}) \\ & = \frac{1}{3} ((x_1,y_1) + (x_2,y_2) + (x_3,y_3)) \\ & = \frac{1}{3} (x_1+ x_2 + x_3,y_1+y_2+y_3) \\ & = \left( \frac{x_1+x_2+x_3}{3} , \frac{y_1+y_2+y_3}{3} \right) \end{align} $
Jadi, terbukti bahwa rumus titik berat merupakan
Titik berat $ = \left( \frac{x_1+x_2+x_3}{3} , \frac{y_1+y_2+y_3}{3} \right) $

-). Vektor di R$^3$
       Misalkan terdapat segitiga ABC dengan koordinat masing-masing titik sudutnya $ A(x_1,y_1,z_1) $ , $ B(x_2,y_2,z_2) $ , dan $ C(x_3,y_3,z_3) $. RUmus titik berat segitiganya :
$ \begin{align} \vec{p} & = \frac{1}{3} (\vec{a} + \vec{b} + \vec{c}) \\ & = \frac{1}{3} ((x_1,y_1,z_1) + (x_2,y_2,z_2) + (x_3,y_3,z_3)) \\ & = \frac{1}{3} (x_1+ x_2 + x_3,y_1+y_2+y_3, z_1 + z_2 + z_3) \\ & = \left( \frac{x_1+x_2+x_3}{3} , \frac{y_1+y_2+y_3}{3} , \frac{z_1+z_2+z_3}{3} \right) \end{align} $
Jadi, terbukti bahwa rumus titik berat merupakan
Titik berat $ = \left( \frac{x_1+x_2+x_3}{3} , \frac{y_1+y_2+y_3}{3} , \frac{z_1+z_2+z_3}{3} \right) $

       Demikian pembahasan bahan Menentukan Titik Berat Segitiga dan contoh-contohnya. Silahkan juga baca bahan lain yang berkaitan dengan aplikasi vektor ialah “pembuktian dalil Menelaus dan Ceva dengan Vektor“.