Operasi Hitung Pada Matriks

Posted on

         Pondok Soal.comOperasi hitung pada matriks yang ada pada matriks merupakan operasi pnjumlahan, operasi pengurangan, persobat semua bilangan real dengan matriks (persobat semua skalar), dan persobat semua dua matriks (persobat semua matriks). Untuk memudahkan dalam penguasaan operasi hitung pada matriks, kita harus memahami ihwal ordo matriks yang sanggup anda baca pada artikel “Pengenalan Matriks“. Berikut penterangan masing-masing.

         Operasi hitung pada matriks bahwasanya taklah sulit, hanya butuh ketelitian ekstra dalam perhitungannya. Dari semua operasi hitung yang akan kita bahas, operasi Persobat semua dua matriks yang agak sulit bentuk perhitungannya, lantaran kita akan mengkombinasikan operasi persobat semua dan penjumlahan. Tapi jangan khawatir saja, dengan kaya berlatih melaksanakan persobat semua dua matriks, maka kita niscaya akan terbiasa dalam melaksanakan operasi perhitungan dua matriks atau lebih.

         Pada Operasi hitung matriks, mengapa tak ada pembagian? ini terjadi lantaran pada persobat semua matriks tak bersifat komutatif. Semisalkan bentuk $ \frac{A}{B} = \frac{1}{B} \times A \neq A \times \frac{1}{B} \, $ . Dari bentuk inilah maka operasi hitung pembagian pada matriks tak ada. Yang ada nantinya merupakan bentuk invers dari matriks dikalikan dengan matriks bukan inversnya.

Penjulahan dua matriks
Misalkan A dan B merupakan matriks berordo $ m \times n \, $ dengan elemen-elemen $ a_{ij} \, $ dan $ b_{ij} $ . Jika matriks C merupakan jumlah matriks A dengan matriks B, ditulis C = A + B, matriks C juga berordo $ m \times n \, $ dengan elemen-elemen ditentukan oleh:
$ c_{ij} = a_{ij} + b_{ij} \, $ (untuk semua $ i \, $ dan $ j$).

Sifat-sifat penjumlahan pada matriks
*). Komutatif : $A + B = B + A$
*). Assosiatif : $(A + B) + C = A + (B + C) $
*). penjumlahan berulang : $ kA = \underbrace{A + A + A + … + A}_{\text{sekaya } k} $

Pengurangan dua matriks
Misalkan A dan B merupakan matriks berordo $ m \times n \, $ dengan elemen-elemen $ a_{ij} \, $ dan $ b_{ij} $ . Jika matriks C merupakan pengurangan matriks A dengan matriks B, ditulis C = A $ – $ B, matriks C juga berordo $ m \times n \, $ dengan elemen-elemen ditentukan oleh:
$ c_{ij} = a_{ij} – b_{ij} \, $ (untuk semua $ i \, $ dan $ j$).

Catatan:
Dua matriks sanggup dijumlahkan atau dikurangkan apabila dan hanya apabila terdapat ordo yang sama. Ordo matriks hasil penjumlahan atau pengurangan dua matriks sama dengan ordo matriks yang dijumlahkan.

Untuk lebih memahami maksud dari teori di atas, pribadi saja kita baca tumpuan – tumpuan berikut.

Contoh 1

Diketahui matriks -matriks berikut :
$ A = \left( \begin{matrix} 2 & -1 & 3 \\ 1 & 4 & -2 \end{matrix} \right) , \, B = \left( \begin{matrix} 5 & 2 & -1 \\ 2 & 1 & 3 \end{matrix} \right) $
$ C = \left( \begin{matrix} 3 & 2 \\ -1 & 6 \end{matrix} \right), \, D = \left( \begin{matrix} x & -1 \\ 2 & y + 3 \end{matrix} \right) $
Tentukan hasil dari :
a). $ A + B \, $ b). $ A – B \, $ c). $ A + C \, $ d). $ C + D $
Penyelesaian :
a). $ A + B $
$ \begin{align} A + B & = \left( \begin{matrix} 2 & -1 & 3 \\ 1 & 4 & -2 \end{matrix} \right) + \left( \begin{matrix} 5 & 2 & -1 \\ 2 & 1 & 3 \end{matrix} \right) \\ & = \left( \begin{matrix} 2 + 5 & -1 + 2 & 3 + (-1) \\ 1 + 2 & 4 + 1 & (-2) + 3 \end{matrix} \right) \\ & = \left( \begin{matrix} 7 & 1 & 2 \\ 3 & 5 & 1 \end{matrix} \right) \end{align} $
b). $ A – B $
$ \begin{align} A – B & = \left( \begin{matrix} 2 & -1 & 3 \\ 1 & 4 & -2 \end{matrix} \right) – \left( \begin{matrix} 5 & 2 & -1 \\ 2 & 1 & 3 \end{matrix} \right) \\ & = \left( \begin{matrix} 2 – 5 & -1 – 2 & 3 – (-1) \\ 1 – 2 & 4 – 1 & (-2) – 3 \end{matrix} \right) \\ & = \left( \begin{matrix} -3 & -3 & 4 \\ -1 & 3 & -5 \end{matrix} \right) \end{align} $
c). $ A + C $
Operasi hitung $ A + C \, $ tak sanggup dilakukan lantaran ordonya berbeda.
d). $ C + D $
$ \begin{align} C + D & = \left( \begin{matrix} 3 & 2 \\ -1 & 6 \end{matrix} \right) + \left( \begin{matrix} x & -1 \\ 2 & y + 3 \end{matrix} \right) \\ & = \left( \begin{matrix} 3 + x & 2 + (-1) \\ (-1) + 2 & 6 + (y + 3) \end{matrix} \right) \\ & = \left( \begin{matrix} x + 3 & 1 \\ 1 & y + 9 \end{matrix} \right) \end{align} $

Persobat semua Suatu Bilangan Real dengan Matriks
Misalkan A merupakan suatu matriks berordo $ m \times n \, $ dengan elemen-elemen $ a_{ij} \, $ dan $ k \, $ merupakan suatu bilangan real. Matriks C merupakan hasil persobat semua bilangan real $ k \, $ terhadap matriks A, dinotasikan: $ C = k.A, \, $ jikalau matriks C berordo $ m \times n \, $ dengan elemen-elemennya ditentukan oleh: $ c_{ij} = k.a_{ij} $ (untuk semua $ i \, $ dan $ j$).

Contoh 2

Diketahui matriks -matriks berikut :
$ A = \left( \begin{matrix} 2 & -1 \\ 1 & 4 \end{matrix} \right) , \, B = \left( \begin{matrix} 5 & 2 \\ 2 & 1 \end{matrix} \right) $
Tentukan hasil dari :
a). $ 3A \, $ b). $ -2B \, $ c). $ A + 3B \, $ d). $ 2A – 3B $
Penyelesaian :
a). $ 3A $
$ \begin{align} 3A & = 3\left( \begin{matrix} 2 & -1 \\ 1 & 4 \end{matrix} \right) \\ & = \left( \begin{matrix} 3.2 & 3.(-1) \\ 3.1 & 3.4 \end{matrix} \right) \\ & = \left( \begin{matrix} 6 & -3 \\ 3 & 12 \end{matrix} \right) \end{align} $
b). $ -2B $
$ \begin{align} -2 B & = -2 \left( \begin{matrix} 5 & 2 \\ 2 & 1 \end{matrix} \right) \\ & = \left( \begin{matrix} -2.5 & -2.2 \\ -2.2 & -2.1 \end{matrix} \right) \\ & = \left( \begin{matrix} -10 & -4 \\ -4 & -2 \end{matrix} \right) \end{align} $
c). $ A + 3B $
$ \begin{align} A + 3B & = \left( \begin{matrix} 2 & -1 \\ 1 & 4 \end{matrix} \right) + 3\left( \begin{matrix} 5 & 2 \\ 2 & 1 \end{matrix} \right) \\ & = \left( \begin{matrix} 2 & -1 \\ 1 & 4 \end{matrix} \right) + \left( \begin{matrix} 15 & 6 \\ 6 & 3 \end{matrix} \right) \\ & = \left( \begin{matrix} 2 + 15 & -1 + 6 \\ 1 + 6 & 4 + 3 \end{matrix} \right) \\ & = \left( \begin{matrix} 17 & 5 \\ 7 & 7 \end{matrix} \right) \end{align} $ d). $ 2A – 3B $
$ \begin{align} 2A – 3B & = 2\left( \begin{matrix} 2 & -1 \\ 1 & 4 \end{matrix} \right) – 3\left( \begin{matrix} 5 & 2 \\ 2 & 1 \end{matrix} \right) \\ & = \left( \begin{matrix} 4 & -2 \\ 2 & 8 \end{matrix} \right) – \left( \begin{matrix} 15 & 6 \\ 6 & 3 \end{matrix} \right) \\ & = \left( \begin{matrix} 4 – 15 & -2 – 2 \\ 2 – 2 & 8 – 1 \end{matrix} \right) \\ & = \left( \begin{matrix} -11 & -4 \\ 0 & 7 \end{matrix} \right) \end{align} $

Persobat semua Dua Matriks

Jika C merupakan matriks hasil persobat semua matriks A$_{m \times n} \, $ dan matriks B$_{n \times p} \, $, dinotasikan C = A $ \times $ B, maka
*). Matriks C berordo $ m \times p$.
*). Elemen-elemen matriks C pada baris ke-$i$ dan kolom ke-$j$, dinotasikan $c_{ij}$, diperoleh dengan cara mengalikan elemen baris ke-$i$ matriks A dan elemen kolom ke-$j$ matriks B, lalu dijumlahkan.
Dinotasikan $ c_{ij} = a_{i1}.b_{1j} + a_{i2}.b_{2j} + a_{i3}.b_{3j} + … + a_{in}.b_{nj} $

Catatan :
*). pada persobat semua dua matriks $ AB \, $ karenanya belum tentu sama dengan $ BA $
*). Dua matriks sanggup dikalikan apabila dan hanya apabila kaya kolom matriks pertama sama dengan kaya baris matriks kedua.

Sifat-sifat persobat semua pada matriks
*). Assosiatif : $(A \times B) \times C = A \times (B \times C) $
*). Distributif : $ A \times (B+C) = A \times B + A \times C $
*). Pangkat : $ A^n = \underbrace{A \times A \times A \times … \times A}_{n \text{ faktor}} $

Contoh 3

Diketahui matriks -matriks berikut :
$ A = \left( \begin{matrix} a & b \\ c & d \end{matrix} \right) , \, B = \left( \begin{matrix} e & f \\ g & h \end{matrix} \right) $
$ C = \left( \begin{matrix} 1 & 2 \\ 3 & 4 \end{matrix} \right) , \, D = \left( \begin{matrix} 5 & 6 \\ 7 & 8 \end{matrix} \right) $
$ P = \left( \begin{matrix} -1 & 3 & 2 \\ 1 & 1 & 1 \end{matrix} \right) , \, Q = \left( \begin{matrix} 1 & 2 \\ -3 & 5 \\ 6 & -2 \end{matrix} \right) $
Tentukan hasil dari :
a). $ AB \, $ b). $ CD \, $ c). $ DC \, $ d). $ PQ $ e). $PC$
Penyelesaian :
a). $ AB $
$ \begin{align} AB & = \left( \begin{matrix} a & b \\ c & d \end{matrix} \right) \left( \begin{matrix} e & f \\ g & h \end{matrix} \right) \\ & = \left( \begin{matrix} \text{baris 1 } \times \text{ kolom 1} & \text{baris 1 } \times \text{ kolom 2} \\ \text{baris 2 } \times \text{ kolom 1} & \text{baris 2 } \times \text{ kolom 2}\end{matrix} \right) \\ & = \left( \begin{matrix} a.e+b.g & a.f + b.h \\ c.e + d.g & c.f + d.h \end{matrix} \right) \end{align} $
b). $ CD $
$ \begin{align} CD & = \left( \begin{matrix} 1 & 2 \\ 3 & 4 \end{matrix} \right) \left( \begin{matrix} 5 & 6 \\ 7 & 8 \end{matrix} \right) \\ & = \left( \begin{matrix} \text{baris 1 } \times \text{ kolom 1} & \text{baris 1 } \times \text{ kolom 2} \\ \text{baris 2 } \times \text{ kolom 1} & \text{baris 2 } \times \text{ kolom 2}\end{matrix} \right) \\ & = \left( \begin{matrix} 1.5+2.7 & 1.6+2.8 \\ 3.5 + 4.7 & 3.6 + 4.8 \end{matrix} \right) \\ & = \left( \begin{matrix} 5+14 & 6+16 \\ 15 + 28 & 18 + 32 \end{matrix} \right) \\ & = \left( \begin{matrix} 19 & 22 \\ 43 & 50 \end{matrix} \right) \end{align} $
c). $ DC $
$ \begin{align} DC & = \left( \begin{matrix} 5 & 6 \\ 7 & 8 \end{matrix} \right) \left( \begin{matrix} 1 & 2 \\ 3 & 4 \end{matrix} \right) \\ & = \left( \begin{matrix} \text{baris 1 } \times \text{ kolom 1} & \text{baris 1 } \times \text{ kolom 2} \\ \text{baris 2 } \times \text{ kolom 1} & \text{baris 2 } \times \text{ kolom 2}\end{matrix} \right) \\ & = \left( \begin{matrix} 5.1+6.3 & 5.2+6.4 \\ 7.1 + 8.3 & 7.2 + 8.4 \end{matrix} \right) \\ & = \left( \begin{matrix} 5+18 & 10+24 \\ 7 + 24 & 14 + 32 \end{matrix} \right) \\ & = \left( \begin{matrix} 23 & 24 \\ 31 & 46 \end{matrix} \right) \end{align} $
terlihat bahwa hasil $ CD \neq DC $

Baca Juga:   Sifat- Sifat Determinan Dan Invers Matriks

d). $ PQ $
$ \begin{align} PQ & = \left( \begin{matrix} -1 & 3 & 2 \\ 1 & 1 & 1 \end{matrix} \right) \left( \begin{matrix} 1 & 2 \\ -3 & 5 \\ 6 & -2 \end{matrix} \right) \\ & = \left( \begin{matrix} \text{baris 1 } \times \text{ kolom 1} & \text{baris 1 } \times \text{ kolom 2} \\ \text{baris 2 } \times \text{ kolom 1} & \text{baris 2 } \times \text{ kolom 2}\end{matrix} \right) \\ & = \left( \begin{matrix} -1.1 + 3.(-3) + 2.6 & -1.2 + 3.5 + 2.(-2) \\ 1.1 + 1. (-3) + 1.6 & 1.2 + 1. 5 + 1.(-2) \end{matrix} \right) \\ & = \left( \begin{matrix} -1 + (-9) + 12 & -2 + 15 + (-4) \\ 1 + (-3) + 6 & 2 + 5 + (-2) \end{matrix} \right) \\ & = \left( \begin{matrix} 2 & 9 \\ 4 & 5 \end{matrix} \right) \end{align} $
e). $ PC $
operasi $ PC \, $ tak sanggup dihitung lantaran tak memenuhi syarat ordonya, ialah kaya kolom matriks $ P \, $ (3 kolom) tak sama dengan kaya baris matriks $ C \, $ (ada 2 baris).

         Demikian untuk pembahasan operasi hitung pada matriks. Sobat sanggup melanjutkan membaca bahan determinan dan invers suatu matriks. Kami yakin, dengan kaya berlatih operasi hitung pada matriks, maka teman-teman niscaya akan sanggup untuk melahap semua soal-soal yang berkaitan dengan operasi hitung matriks menyerupai operasi penjumlahan, pengurangan, kali skalar, dan kali dua matriks. Semoga bahan pada artikel ini bermanfaat untuk kita semua. Terima kasih untuk kunjungannya ke Pondok Soal.com ini.