Persamaan Logaritma

Posted on
         Pondok Soal.comPersamaan Logaritma merupakan persamaan yang melibatkan sifat-sifat logaritma yang dihubungkan dengan tanda sama dengan. Untuk artikel kali ini akan dibahas ihwal persamaan logaritma dari bentuk yang paling simpel hingga yang lebih sulit.

         Persamaan Logaritma terdapat bermacam bentuk dari yang paling simpel dan yang paling kompleks. Untuk memudahkan dalam mempelajari persamaan logaritma, sebaiknya kita kuasai dahulu sifat-sifat logaritma, alasannya yaitu niscaya akan melibatkan sifat-sifat logaritma setiap kali menuntaskan bentuk persamaan logaritmanya.

         Persamaan Logaritma akan kerap kita jumpai pada soal-soal ujian nasional inginpun seleksi masuk sekolah tinggi tinggi. Tentu soal-soalnya akan bervariasi dari tipe yang simpel hingga yang paling sulit. Tapi jangan khawatir saja teman-teman, salah satu cara terbaik untuk mengatasinya merupakan dengan latihan dan kaya mengerjakan soal-soal yang setingkat, maka kita niscaya akan sanggup mengerjakannya. Dan satu hal penting yang harus selalu diingat merupakan semua akar-akar dari penyelesaian persamaan logaritma harus memenuhi semua syarat logaritma yang ada, ini artinya belum tentu semua akar-akar yang kita peroleh merupakan sebagai solusi dari persamaannya.

Konsep Persamaan Logaritma
Untuk $ a, \, b \in R , \, a > 0 , \, b > 0 , \, $ dan $ a \neq 1 , \, $ berlaku sifat-sifat persamaan logaritma berikut :
(i). $ {}^a \log f(x) = {}^a \log g(x) , \, $ solusinya $ f(x) = g(x) $
       dengan syarat : $ f(x) > 0 \, $ dan $ g(x) > 0 $
(ii). $ {}^{h(x)} \log f(x) = {}^{h(x)} \log g(x) , \, $ solusinya $ f(x) = g(x) $
       dengan syarat : $ f(x) > 0, \, g(x) > 0 , \, h(x) > 0, \, $ dan $ h(x) \neq 1 $
(iii). $ {}^{f(x)} \log b = {}^{g(x)} \log b , \, $ solusinya $ f(x) = g(x) $
       dengan syarat : $ b > 0 , f(x) > 0 , f(x) \neq 1, g(x) > 0 , \, $ dan $ g(x) \neq 1 $
(iv). $ {}^{f(x)} \log h(x) = {}^{g(x)} \log h(x) , \, $ solusinya semua yang memenuhi
    1). $ f(x) = g(x) $
    2). $ h(x) = 1 $
    dengan syarat : $ h(x) > 0 , \, f(x) > 0 , \, f(x) \neq 1, \, g(x) > 0 , \, $ dan $ g(x) \neq 1 $

Hint :
Ruas kiri dan kanan harus memuat bentuk logaritma.
Nilai $ x \, $ yang diperoleh harus memenuhi semua syarat yang ada.

Baca Juga:   Fungsi Logaritma

         Untuk lebih gampang dalam memahami sifat-sifat persamaan logaritma, mari kita lihat contoh-contoh soal berikut :

Contoh 1.

Tentukan nilai $ x \, $ yang memenuhi persamaan $ {}^5 \log (3x-1) = {}^5 \log 2 $ ?
Penyelesaian :
$\spadesuit \, $ Berdasarkan sifat persamaan (i) : $ {}^a \log f(x) = {}^a \log g(x) $
$ f(x) = 3x-1 \, $ dan $ g(x) = 2 \, $ dengan solusi $ f(x) = g(x) \, $ dan syarat $ f(x) > 0 $
$\spadesuit \, $ Menentukan nilai $ x $
$\begin{align} f(x) & = g(x) \\ 3x-1 & = 2 \\ 3x & = 3 \\ x & = 1 \end{align}$
$\spadesuit \, $ Cek syarat untuk $ x = 1 $
$ x = 1 \rightarrow f(x) = 3x-1 \rightarrow f(1) = 3.1 -1 = 2 > 0 $
Karena untuk $ x = 1 , \, $ terpenuhi syarat $ f(x) > 0 , \, $ maka $ x = 1 \, $ merupakan solusi yang memenuhi persamaan tersebut.
Jadi, nilai $ x = 1 \, $ yang memenuhi persamaan. $ \heartsuit $

Contoh 2.

Tentukan nilai $ x \, $ yang memenuhi persamaan $ {}^2 \log (2x-2) = 3 $ ?
Penyelesaian :
$\clubsuit \,$ Modifikasi soal semoga kedua ruas memuat logaritma
$ {}^2 \log (2x-2) = 3 \rightarrow {}^2 \log (2x-2) = {}^2 \log 2^3 $
$ \rightarrow {}^2 \log (2x-2) = {}^2 \log 8 $
Sesampai kemudian soalnya menjadi : $ {}^2 \log (2x-2) = {}^2 \log 8 $
$\clubsuit \,$ Berdasarkan sifat persamaan (i) : $ {}^a \log f(x) = {}^a \log g(x) $
$ f(x) = 2x-2 \, $ dan $ g(x) = 8 \, $ dengan solusi $ f(x) = g(x) \, $ dan syarat $ f(x) > 0 $
$\clubsuit \,$ Menentukan nilai $ x $
$\begin{align} f(x) & = g(x) \\ 2x-2 & = 8 \\ 2x & = 10 \\ x & = 5 \end{align}$
$\clubsuit \,$ Cek syarat untuk $ x = 5 $
$ x = 5 \rightarrow f(x) = 2x-2 \rightarrow f(5) = 2.5-2 = 8 > 0 $
Karena untuk $ x = 5 , \, $ terpenuhi syarat $ f(x) > 0 , \, $ maka $ x = 5 \, $ merupakan solusi yang memenuhi persamaan tersebut.
Jadi, nilai $ x = 5 \, $ yang memenuhi persamaan. $ \heartsuit $

Contoh 3.

Tentukan nilai $ x \, $ yang memenuhi persamaan
$ {}^4 \log (3x-1) = {}^4 \log (2x+2) $ ?
Penyelesaian :
$\spadesuit \, $ Berdasarkan sifat persamaan (i) : $ {}^a \log f(x) = {}^a \log g(x) $
$ f(x) = 3x-1 \, $ dan $ g(x) = 2x+2 \, $ dengan solusi $ f(x) = g(x) \, $ dan syarat $ f(x) > 0 , \, g(x) > 0 $
$\spadesuit \, $ Menentukan nilai $ x $
$\begin{align} f(x) & = g(x) \\ 3x-1 & = 2x+2 \\ 3x – 2x & = 2 + 1 \\ x & = 3 \end{align}$
$\spadesuit \, $ Cek syarat untuk $ x = 3 $
$ x = 3 \rightarrow f(x) = 3x-1 \rightarrow f(3) = 3.3 -1 = 8 > 0 $
$ x = 3 \rightarrow g(x) = 2x+2 \rightarrow g(3) = 2.3+2 = 8 > 0 $
Karena untuk $ x = 3 , \, $ terpenuhi syarat $ f(x) > 0 , \, g(x) > 0 , \, $ maka $ x = 3 \, $ merupakan solusi yang memenuhi persamaan tersebut.
Jadi, nilai $ x = 3 \, $ yang memenuhi persamaan. $ \heartsuit $

Contoh 4.

Tentukan nilai $ x \, $ yang memenuhi persamaan
$ {}^{3x-5} \log (2x+1) = {}^{3x-5} \log (x+3) $ ?
Penyelesaian :
$\clubsuit \,$ Berdasarkan sifat persamaan (ii) : $ {}^{h(x)} \log f(x) = {}^{h(x)} \log g(x) $
$h(x) = 3x-5, \, f(x) = 2x+1 \, $ dan $ g(x) = x+3 \, $ dengan solusi $ f(x) = g(x) \, $ dan syarat $ f(x) > 0, \, g(x) > 0, \, h(x) > 0, \, h(x) \neq 1 $
$\clubsuit \,$ Menentukan nilai $ x $
$\begin{align} f(x) & = g(x) \\ 2x+1 & = x+3 \\ 2x – x & = 3-2 \\ x & = 1 \end{align}$
$\clubsuit \,$ Cek syarat untuk $ x = 2 $
$ x = 2 \rightarrow h(x) = 3x-5 \rightarrow h(2) = 3.2 – 5 = 1 > 0 $
Karena untuk $ x = 2 , \, $ diperoleh nilai $ h(x) = 1 , \, $ sementara syaratnya haruslah $ h(x) \neq 1 , \, $ ini artinya $ x = 2 \, $ tak memenuhi syarat. Sesampai kemudian tak ada nilai $ x \, $ yang memenuhi persamaan logaritma tersebut (tak ada solusi atau jawabannya himpunan kosong).
Catatan : Nilai $ x \, $ yang diperoleh harus memenuhi semua syarat yang ada, apabila salah satu saja ada syarat yang tak terpenuhi, maka sanggup dikatan nilai $ x \, $ tersebut gagal menjadi solusi persamaan logaritmanya.
Jadi, tak ada nilai $ x \, $ yang memenuhi persamaan. $ \heartsuit $

Contoh 5.

Tentukan nilai $ x \, $ yang memenuhi persamaan
$ {}^{x^2 + 6x} \log (\frac{1}{3}) = {}^{2x+5} \log (\frac{1}{3}) $ ?
Penyelesaian :
$\spadesuit \, $ Berdasarkan sifat persamaan (iii) : $ {}^{f(x)} \log b = {}^{g(x)} \log b $
$ f(x) = x^2 + 6x \, $ dan $ g(x) = 2x+5 \, $ dengan solusi $ f(x) = g(x) \, $ dan syarat $ f(x) > 0 , \, f(x) \neq 1, \, g(x) > 0, \, f(x) \neq 1 $
$\spadesuit \, $ Menentukan nilai $ x $
$\begin{align} f(x) & = g(x) \\ x^2 + 6x & = 2x+5 \\ x^2 + 4x – 5 & = 0 \\ (x-1)(x+5) & = 0 \\ x = 1 \vee x & = -5 \end{align}$
$\spadesuit \, $ Cek syarat untuk $ x = 1 \, $ dan $ x = -5 $
*). Untuk $ x = 1 $
$ f(x) = x^2 + 6x \rightarrow f(1) = 1^2 + 6.1 = 7 > 0 $
$ g(x) = 2x+5 \rightarrow g(1) = 2.1+5 = 7 > 0 $
nilai $ x = 1 \, $ memenuhi syarat.
*). Untuk $ x = -5 $
$ f(x) = x^2 + 6x \rightarrow f(-5) = (-5)^2 + 6.(-5) = -5 < 0 $
$ g(x) = 2x+5 \rightarrow g(1) = 2.(-5)+5 = -5 < 0 $
nilai $ x = -5 \, $ tak memenuhi syarat.
Sesampai kemudian yang memenuhi syarat merupakan $ x = 1 $ .
Jadi, nilai $ x = 1 \, $ yang memenuhi persamaan. $ \heartsuit $

Contoh 6.

Tentukan nilai $ x \, $ yang memenuhi persamaan
$ {}^{2x^2-3x+1} \log (2x-1) = {}^{x^2+2x-5} \log (2x-1) $ ?
Penyelesaian :
$\clubsuit \,$ Berdasarkan sifat persamaan (iv) : $ {}^{f(x)} \log h(x) = {}^{g(x)} \log h(x) $
$h(x) = 2x-1, \, f(x) = 2x^2-3x+1 \, $ dan $ g(x) = x^2+2x-5 \, $ dengan solusi $ f(x) = g(x) \, $ dan $ h(x) = 1 , \, $ dengan syarat $ h(x) > 0 , \, f(x) > 0 , \, f(x) \neq 1, \, g(x) > 0 , \, $ dan $ g(x) \neq 1 $
$\clubsuit \,$ Menentukan nilai $ x $
*). Solusi pertama :
$\begin{align} f(x) & = g(x) \\ 2x^2-3x+1 & = x^2+2x-5 \\ x^2 – 5x + 6 & = 0 \\ (x-2)(x-3) & = 0 \\ x = 2 \vee x & = 3 \end{align}$
Cek untuk nilai $ x = 2 \, $ dan $ x = 3 $
untuk $ x = 2 $
$ h(x) = 2x-1 \rightarrow h(2) = 2.2 – 1 = 3 \, $ (memenuhi)
$ f(x) = 2x^2-3x+1 \rightarrow f(2) = 2.2^2-3.2+1 = 3 \, $ (memenuhi)
$ g(x) = x^2+2x-5 \rightarrow g(2) = 2^2+2.2-5 = 3 \, $ (memenuhi)
untuk $ x = 3 $
$ h(x) = 2x-1 \rightarrow h(3) = 2.3 – 1 = 5 \, $ (memenuhi)
$ f(x) = 2x^2-3x+1 \rightarrow f(3) = 2.3^2-3.3+1 = 10 \, $ (memenuhi)
$ g(x) = x^2+2x-5 \rightarrow g(2) = 3^2+2.3-5 = 10 \, $ (memenuhi)
Artinya untuk nilai $ x = 2 \, $ dan $ x = 3 \, $ memenuhi syarat sebagai solusi dari persamaannya.
*). Solusi kedua : $ h(x) = 1 $
$\begin{align} h(x) & = 1 \\ 2x-1 & = 1 \\ 2x & = 2 \\ x & = 1 \end{align}$
Cek untuk nilai $ x = 1 $
untuk $ x = 2 $
$ f(x) = 2x^2-3x+1 \rightarrow f(1) = 2.1^2-3.1+1 = 1 \, $ (tak memenuhi)
$ g(x) = x^2+2x-5 \rightarrow g(1) = 1^2+2.1-5 = -2 \, $ (tak memenuhi)
Artinya nilai $ x = 1 \, $ tak memenuhi syarat atau nilai $ x = 1 \, $ tak sebagai solusi dari persamaan.
Jadi, penyelesaiannya merupakan $ x = 2 \, $ dan $ x = 3 . \heartsuit $

         Sebenarnya masih ada lagi tipe atau bentuk lain dari persamaan logaritma ibarat bentuk persamaan logaritma yang melibatkan bentuk polinomial (suku kaya). Untuk tipe lainnya, anda sanggup lihat pada kumpulan soal-soal logaritma. Semoga Bermanfaat. Terima kasih.

Baca Juga:   Pertidaksamaan Logaritma