Sifat Operasi Perkalian Dot Dan Perkalian Silang

Posted on

         Pondok Soal.com – Setelah mempelajari bahan “persobat semua dot dua vektor” dan “persobat semua silang dua vektor” , pada artikel ini kita lanjutkan dengan pembahasan artikel Sifat Operasi Persobat semua Dot dan Persobat semua Silang. Pada soal-soal seleksi masuk Perguruan Tinggi Negeri menyerupai SBMPTN atau seleksi berdikari masuk Perguruan Tinggi Negeri (perguruan tinggi negeri), soal-soal yang dikeluarkan tak melulu dalam bentuk hitungan melainkan berkaitan dengan sifat-sifatnya menyerupai Sifat Operasi Persobat semua Dot dan Persobat semua Silang apabila berkaitan dengan vektor. Pada halaman ini, kita akan menyaapabilan masing-masing Sifat Operasi Persobat semua Dot dan Persobat semua Silang yang diikuti dengan pembuktiannya. Setelah itu gres kita pelajari sedikit pola soalnya. Untuk memudahkan mempelajari Sifat Operasi Persobat semua Dot dan Persobat semua Silang ini, sebaiknya teman-teman harus menguasai terlebih dahulu bahan persobat semua dot dan persobat semua silang dengan baik alasannya ialah pada pembuktiannya kita eksklusif memakai perhitungan sesuai definisi persobat semua dot dan persobat semua silangnya. Berikut Sifat Operasi Persobat semua Dot dan Persobat semua Silang.

Sifat-sifat Operasi Persobat semua Dot
       Misalkan vektor-vektor $ \vec{a} $ , $ \vec{b} $ dan $ \vec{c} $ di R$^2 $ atau di R$^3$ serta $ k $ skalar tak nol. Sifat-sifat Operasi Persobat semua Dot yaitu :
1). $ \vec{a}. \vec{b} = \vec{b} . \vec{a} \, $ (sifat komutatif)
2). $ \vec{a} . (\vec{b} + \vec{c}) = \vec{a} . \vec{b} + \vec{a} . \vec{c} \, $ (sifat distributif)
3). $ (\vec{a} +\vec{b}).\vec{c} = \vec{a} . \vec{c} + \vec{b} . \vec{c} \, $ (sifat distributif)
4). $ k(\vec{a}.\vec{b}) = (k\vec{a}).\vec{b} = \vec{a}.(k\vec{b}) $
5). $ \vec{a}. \vec{a} = |\vec{a}|^2 $
6). Jika $ \vec{a} \neq 0 $ , $ \vec{b} \neq 0 $ dan $ \vec{a}. \vec{b} = 0 $ , maka $ \vec{a} $ tegak lurus $ \vec{b} $

$ \clubsuit \, $ Pembuktian Sifat-sifat Operasi Persobat semua Dot :
       Misalkan vektor-vektor $ \vec{a} = (a_1, a_2, a_3) $ , $ \vec{b} = (b_1,b_2,b_3) $ dan $ \vec{c} = (c_1,c_2,c_3) $ di R$^3$ serta $ k $ skalar tak nol. (teman-teman juga sanggup memakai vektor-vektor di R$^2$).
*). Pembuktian sifat (1) :
$ \begin{align} \vec{a}. \vec{b} & = (a_1, a_2, a_3) . (b_1,b_2,b_3) \\ & = a_1b_1 + a_2b_2 + a_3b_3 \\ & = b_1a_1 + b_2a_2 + b_3a_3 \\ & = (b_1,b_2,b_3) . (a_1, a_2, a_3) \\ & = \vec{b}. \vec{a} \end{align} $
Terbukti $ \vec{a}. \vec{b} = \vec{b} . \vec{a} $

*). Pembuktian sifat (2) :
$ \begin{align} \vec{a} (\vec{b} + \vec{c}) & = (a_1, a_2, a_3). [(b_1,b_2,b_3) + (c_1,c_2,c_3)] \\ & = (a_1, a_2, a_3). (b_1+c_1,b_2+c_2,b_3+c_3) \\ & = a_1(b_1+c_1) + a_2(b_2+c_2) + a_3(b_3+c_3) \\ & = a_1b_1+a_1c_1 + a_2b_2+a_2c_2 + a_3b_3+b_3c_3 \\ & = (a_1b_1+a_2b_2 + a_3b_3) +( a_1c_1 +a_2c_2 +b_3c_3) \\ & = \vec{a} . \vec{b} + \vec{a} . \vec{c} \end{align} $
Terbukti $ \vec{a} (\vec{b} + \vec{c}) = \vec{a} . \vec{b} + \vec{a} . \vec{c} $

*). Pembuktian Sifat (3) :
$ \begin{align} (\vec{a} +\vec{b}).\vec{c} & = [(a_1, a_2, a_3) + (b_1,b_2,b_3)].(c_1,c_2,c_3) \\ & = (a_1+b_1, a_2+b_2, a_3+b_3).(c_1,c_2,c_3) \\ & = (a_1+b_1)c_1+ (a_2+b_2)c_2+ (a_3+b_3)c_3 \\ & = a_1c_1+b_1 c_1+ a_2c_2+b_2c_2+ a_3c_3+b_3c_3 \\ & = (a_1c_1+ a_2c_2 + a_3c_3) + (b_1 c_1+b_2c_2+b_3c_3) \\ & = \vec{a} . \vec{c} + \vec{b} . \vec{c} \end{align} $
Terbukti $ (\vec{a} +\vec{b}).\vec{c} = \vec{a} . \vec{c} + \vec{b} . \vec{c} $

Baca Juga:   Perkalian Dot Dua Vektor

*). Pembuktian sifat (4) :
$ \begin{align} k(\vec{a}.\vec{b}) & = k [(a_1, a_2, a_3) . (b_1,b_2,b_3)] \\ & = k [a_1b_1 + a_2b_2 + a_3b_3 ] \\ & = k a_1b_1 + ka_2b_2 + ka_3b_3 \\ (k\vec{a}).\vec{b} & = [k(a_1, a_2, a_3)].(b_1,b_2,b_3) \\ & = (ka_1, ka_2, ka_3) .(b_1,b_2,b_3) \\ & = ka_1b_1 + ka_2b_2 + ka_3b_3 \\ \vec{a}.(k\vec{b}) & = (a_1, a_2, a_3).[k(b_1,b_2,b_3)] \\ & = (a_1, a_2, a_3).(kb_1,kb_2,kb_3) \\ & = a_1kb_1 + a_2kb_2 + a_3kb_3 \\ & = ka_1b_1 + ka_2b_2 + ka_3b_3 \end{align} $
Dari ketiga hasil di atas, terbukti bahwa
$ k(\vec{a}.\vec{b}) = (k\vec{a}).\vec{b} = \vec{a}.(k\vec{b}) $

*). Pembuktian sifat (5) : $ \vec{a}. \vec{a} = |\vec{a}|^2 $
Untuk pembuktian sifat (5) ini, silahkan teman-teman baca pada artikel “Rumus Panjang Berkaitan Persobat semua Dot“.

*). Pembuktian sifat (6) :
$ \begin{align} \vec{a}. \vec{b} & = 0 \\ |\vec{a}|| \vec{b}| \sin \theta & = 0 \\ \sin \theta & = 0 \\ \theta & = 90^\circ \end{align} $
Terbukti sudut antara vektor $ \vec{a} $ dan $ \vec{b} $ merupakan $ 90^\circ $ atau kita sebut $ \vec{a} $ tegak lurus $ \vec{b} $ atau sanggup kita tulis $ \vec{a} \bot \vec{b} $.

Sifat-sifat Operasi Persobat semua Silang
       Misalkan vektor-vektor $ \vec{a} $ , $ \vec{b} $ dan $ \vec{c} $ di R$^3$ dan $ k $ skalar tak nol. Sifat-sifat Operasi Persobat semua silang yaitu :
1). $ \vec{a} \times \vec{b} = -\vec{b} \times \vec{a} \, $ (sifat anti komutatif)
2). $ \vec{a} \times (\vec{b} + \vec{c}) = \vec{a} \times \vec{b} + \vec{a} \times \vec{c} \, $ (sifat distributif)
3). $ (\vec{a} +\vec{b}) \times \vec{c} = \vec{a} \times \vec{c} + \vec{b} \times \vec{c} \, $ (sifat distributif)
4). $ k(\vec{a} \times \vec{b}) = (k\vec{a}) \times \vec{b} = \vec{a} \times (k\vec{b}) $
5). Jika $ \vec{a} \neq 0 $ , $ \vec{b} \neq 0 $ dan $ \vec{a} \times \vec{b} = 0 $ , maka $ \vec{a} $ sejajar $ \vec{b} $

$ \spadesuit \, $ Pembuktian Sifat-sifat Operasi Persobat semua Silang :
       Misalkan vektor-vektor $ \vec{a} = (a_1, a_2, a_3) $ , $ \vec{b} = (b_1,b_2,b_3) $ dan $ \vec{c} = (c_1,c_2,c_3) $ di di R$^3$ serta $ k $ skalar tak nol.
*). Pembuktian sifat (1) :
$ \begin{align} \vec{a} \times \vec{b} & = \left| \begin{matrix} \vec{i} & \vec{j} & \vec{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{matrix} \right| \\ & = (a_2b_3 – a_3b_2 , a_3b_1 – a_1b_3 , a_1b_2 – a_2b_1 ) \\ – \vec{b} \times \vec{a} & = – \left| \begin{matrix} \vec{i} & \vec{j} & \vec{k} \\ b_1 & b_2 & b_3 \\ a_1 & a_2 & a_3 \end{matrix} \right| \\ & = -(a_3b_2 – a_2b_3 , a_1b_3 – a_3b_1 , a_2b_1 – a_1b_2 ) \\ & = (-a_3b_2 + a_2b_3 , -a_1b_3 + a_3b_1 , -a_2b_1 + a_1b_2 ) \\ & = (a_2b_3 – a_3b_2 , a_3b_1 – a_1b_3 , a_1b_2 – a_2b_1 ) \end{align} $
Terbukti $ \vec{a} \times \vec{b} = -\vec{b} \times \vec{a} $

*). Pembuktian sifat (2) :
$ \begin{align} & \vec{a} \times (\vec{b} + \vec{c}) \\ & = (a_1, a_2, a_3) \times [(b_1,b_2,b_3) + (c_1,c_2,c_3)] \\ & = (a_1, a_2, a_3) \times (b_1+c_1,b_2+c_2,b_3+c_3) \\ & = \left| \begin{matrix} \vec{i} & \vec{j} & \vec{k} \\ a_1 & a_2 & a_3 \\ b_1+c_1 & b_2+c_2 & b_3 +c_3 \end{matrix} \right| \\ & = (a_2(b_3+c_3) – a_3(b_2+c_2) , a_3(b_1+c_1) – a_1(b_3+c_3) , a_1(b_2+c_2) – a_2(b_1+c_1) ) \\ & \vec{a} \times \vec{b} + \vec{a} \times \vec{c} \\ & = \left| \begin{matrix} \vec{i} & \vec{j} & \vec{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{matrix} \right| + \left| \begin{matrix} \vec{i} & \vec{j} & \vec{k} \\ a_1 & a_2 & a_3 \\ c_1 & c_2 & c_3 \end{matrix} \right| \\ & = (a_2b_3 – a_3b_2 , a_3b_1 – a_1b_3 , a_1b_2 – a_2b_1 ) + (a_2c_3 – a_3c_2 , a_3c_1 – a_1c_3 , a_1c_2 – a_2c_1 ) \\ & = (a_2b_3 + a_2c_3 – a_3b_2 – a_3c_2 , a_3b_1 + a_3c_1 – a_1b_3 – a_1c_3 , a_1b_2 + a_1c_2 – a_2b_1 – a_2c_1 ) \\ & = (a_2(b_3 + c_3) – a_3(b_2 +c_2) , a_3(b_1 + c_1) – a_1(b_3 +c_3) , a_1(b_2 + c_2) – a_2(b_1 +c_1) ) \end{align} $
Kedua bentuk di atas terdapat hasil yang sama.
Terbukti $ \vec{a} \times (\vec{b} + \vec{c}) = \vec{a} \times \vec{b} + \vec{a} \times \vec{c} $

Baca Juga:   Penjumlahan Dan Pengurangan Pada Vektor

*). Pembuktian sifat (3) :
$ \begin{align} & (\vec{a} +\vec{b}) \times \vec{c} \\ & = [(a_1, a_2, a_3) + (b_1,b_2,b_3)] \times (c_1,c_2,c_3) \\ & = (a_1+b_1, a_2+b_2, a_3+b_3) \times (c_1,c_2,c_3) \\ & = \left| \begin{matrix} \vec{i} & \vec{j} & \vec{k} \\ a_1 + b_1 & a_2 + b_2 & a_3 + b_3 \\ c_1 & c_2 & c_3 \end{matrix} \right| \\ & = ((a_2+b_2)c_3 – (a_3+b_3)c_2 , (a_3+b_3)c_1 – (a_1+b_1)c_3 , (a_1+b_1)c_2 – (a_2+b_2)c_1 ) \\ & \vec{a} \times \vec{c} + \vec{b} \times \vec{c} \\ & = \left| \begin{matrix} \vec{i} & \vec{j} & \vec{k} \\ a_1 & a_2 & a_3 \\ c_1 & c_2 & c_3 \end{matrix} \right| + \left| \begin{matrix} \vec{i} & \vec{j} & \vec{k} \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{matrix} \right| \\ & = (a_2c_3 – a_3c_2 , a_3c_1 – a_1c_3 , a_1c_2 – a_2c_1 ) + (b_2c_3 – b_3c_2 , b_3c_1 – b_1c_3 , b_1c_2 – b_2c_1 ) \\ & = (a_2c_3 – a_3c_2 + b_2c_3 – b_3c_2 , a_3c_1 – a_1c_3 + b_3c_1 – b_1c_3 , a_1c_2 – a_2c_1 + b_1c_2 – b_2c_1 ) \\ & = (a_2c_3 + b_2c_3 – a_3c_2 – b_3c_2 , a_3c_1 + b_3c_1 – a_1c_3 – b_1c_3 , a_1c_2 + b_1c_2 – a_2c_1- b_2c_1 ) \\ & = ((a_2 + b_2)c_3 – (a_3+b_3)c_2 , (a_3 + b_3)c_1 – (a_1+b_1)c_3 , (a_1 + b_1)c_2 – (a_2 + b_2)c_1 ) \end{align} $
Kedua bentuk di atas terdapat hasil yang sama.
Terbukti $ (\vec{a} +\vec{b}) \times \vec{c} = \vec{a} \times \vec{c} + \vec{b} \times \vec{c} $.

*). Pembuktian sifat (4) :
$ \begin{align} k(\vec{a} \times \vec{b}) & = k \left| \begin{matrix} \vec{i} & \vec{j} & \vec{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{matrix} \right| \\ & = k (a_2b_3 – a_3b_2 , a_3b_1 – a_1b_3 , a_1b_2 – a_2b_1 ) \\ & = (ka_2b_3 – ka_3b_2 , ka_3b_1 – ka_1b_3 , ka_1b_2 – ka_2b_1 ) \\ (k\vec{a}) \times \vec{b} & = \left| \begin{matrix} \vec{i} & \vec{j} & \vec{k} \\ ka_1 & ka_2 & ka_3 \\ b_1 & b_2 & b_3 \end{matrix} \right| \\ & = (ka_2b_3 – ka_3b_2 , ka_3b_1 – ka_1b_3 , ka_1b_2 – ka_2b_1 ) \\ \vec{a} \times (k\vec{b}) & = \left| \begin{matrix} \vec{i} & \vec{j} & \vec{k} \\ a_1 & a_2 & a_3 \\ kb_1 & kb_2 & kb_3 \end{matrix} \right| \\ & = (a_2kb_3 – a_3kb_2 , a_3kb_1 – a_1kb_3 , a_1kb_2 – a_2kb_1 ) \\ & = (ka_2b_3 – ka_3b_2 , ka_3b_1 – ka_1b_3 , ka_1b_2 – ka_2b_1 ) \end{align} $
Ketiga hasil di atas nilainya sama.
Terbukti $ k(\vec{a} \times \vec{b}) = (k\vec{a}) \times \vec{b} = \vec{a} \times (k\vec{b}) $

Baca Juga:   Perkalian Silang Dua Vektor

*). Pembuktian sifat (5) :
Jika $ \vec{a} \neq 0 $ , $ \vec{b} \neq 0 $ dan $ \vec{a} \times \vec{b} = 0 $ , maka $ \vec{a} $ sejajar $ \vec{b} $
$ \begin{align} \vec{a} \times \vec{b} & = 0 \\ | \vec{a} \times \vec{b} | & = 0 \\ | \vec{a} | |\vec{b} | \sin \theta & = 0 \\ \sin \theta & = 0 \\ \theta & = 0^\circ \end{align} $
Karena sudut antara vektor $ \vec{a} $ dan $ \vec{b} $ merupakan $ 0^\circ $, maka kedua vektor ini sejajar. Kaprikornus terbukti sifat (5).

Contoh soal Sifat Operasi Persobat semua Dot dan Persobat semua Silang :

1). Dari bentuk berikut ini, manakah yang SALAH
A). $ \vec{a}.(\vec{b}.\vec{c}) = (\vec{a}.\vec{b}).\vec{c} $
B). $ \vec{a}. \vec{b} = \vec{b} . \vec{a} \, $
C). $ \vec{a} . (\vec{b} + \vec{c}) = \vec{a} . \vec{b} + \vec{a} . \vec{c} \, $
D). $ (\vec{a} +\vec{b}).\vec{c} = \vec{a} . \vec{c} + \vec{b} . \vec{c} \, $
E). $ k(\vec{a}.\vec{b}) = (k\vec{a}).\vec{b} = \vec{a}.(k\vec{b}) $
Penyelesaian :
*). dari sifat-sifat persobat semua dot di atas, maka yang salah merupakan option (A). Kenapa option A salah? berikut penterangannya.
-). Perhatikan bentuk $ \vec{b}.\vec{c} $, akhirnya merupakan skalar (bukan vektor).
-). bentuk $ \vec{a}.(\vec{b}.\vec{c}) $ = vektor dot skalar, tak terdefinis alasannya ialah persobat semua dot berlaku hanya antara vektor dan vektor.
Karena tak terdefinisi, maka otomatis option (A) salah.

2). Manakah dari pernyataan berikut yang SALAH !
A). $ \vec{a} \times (\vec{b} + \vec{c}) = \vec{a} \times \vec{b} + \vec{a} \times \vec{c} \, $
B). $ (\vec{a} +\vec{b}) \times \vec{c} = \vec{a} \times \vec{c} + \vec{b} \times \vec{c} \, $
C). $ k(\vec{a} \times \vec{b}) = (k\vec{a}) \times \vec{b} = \vec{a} \times (k\vec{b}) $
D). Jika $ \vec{a} \neq 0 $ , $ \vec{b} \neq 0 $ dan $ \vec{a} \times \vec{b} = 0 $ , maka $ \vec{a} $ sejajar $ \vec{b} $
E). $ \vec{a} \times \vec{b} = \vec{b} \times \vec{a} \, $
Penyelesaian :
*). Option atau pernyataan yang salah merupakan option (E) alasannya ialah pada persobat semua silang tak berlaku sifat komutatif melainkan berlaku sifat anti komutatif yaitu $ \vec{a} \times \vec{b} = -\vec{b} \times \vec{a} $ .

       Demikian pembahasan bahan Sifat Operasi Persobat semua Dot dan Persobat semua Silang dan contoh-contohnya. Silahkan juga baca bahan lain yang berkaitan dengan “Materi vektor tingkat SMA” lainnya yaitu “proyeksi ortogonal vektor pada vektor“.